
Programming with MPI

Advanced Completion Issues

Nick Maclaren

nmm1@cam.ac.uk

May 2008

Programming with MPI – p. 1/??

More on Completion

More on Point--to--Point made simplifying assumptions
This describes when those are not so
Three more advanced features complicate things

• Waiting for a subset of requests (described shortly)

• Cancellation of requests (described shortly)
• Persistent requests (described in a later lecture)

I don’t recommend using any of these
But this is a description of the issues

Programming with MPI – p. 2/??

Empty Statuses

MPI has the concept of an empty status

An empty status looks like the following:
• The tag is MPI---ANY---TAG
• The source is MPI---ANY---SOURCE

[⇒ or possibly MPI---PROC---NULL]
• MPI---Get---count returns zero

And, for properties we haven’t covered yet:
• The error code is MPI---SUCCESS
• MPI---Test---cancelled returns False

Programming with MPI – p. 3/??

Completion of Subsets (1)

MPI---Testsome and MPI---Waitsome

These check for or complete some of the requests
and return a count of how many
plus arrays of indices and statuses

For wait and when test’s flag is True:

The index array lists the completed requests
First count elements of the status array are set
The other statuses are not defined

Programming with MPI – p. 4/??

Completion of Subsets (2)

If not enough of the requests are ready
• The tests set their flag to False
• The waits hang until something happens

If enough of the requests are ready
• Any completes just one request
• Some/all complete all ready requests
• The tests set their flag to True

All completed requests are released exactly
as for the individual request forms

Programming with MPI – p. 5/??

Error Codes (1)

What if not using MPI---ERRORS---ARE---FATAL?

Multiple errors from the all and some forms

One of the many reasons the default is easiest

The error code may be MPI---ERR---IN---STATUS

The individual error codes are in the statuses
Including the empty statuses of the all forms

Programming with MPI – p. 6/??

Error Codes (2)

<status array> (MPI---ERROR , <index>) (Fortran)

<status array> [<index>] . MPI---ERROR (C)

The MPI---ERROR fields are set if and only if:
• You call one of the all or some forms
• Its error code is MPI---ERR---IN---STATUS

That field is never set for the any forms
I.e. exactly like the individual request forms
They will never return MPI---ERR---IN---STATUS

Programming with MPI – p. 7/??

Fortran Multiple Errors

INTEGER :: i , error , requests (100) , &

statuses (MPI---STATUS---SIZE , 100)

CALL MPI---Waitall (100 , requests , statuses , error)

IF (error == MPI---ERR---IN---STATUS) THEN

DO i = 1 , 100

IF (statuses (MPI---ERROR , i) /= &

MPI---SUCCESS) THEN

CALL fail (statuses (MPI---ERROR , i))

END IF
END DO

ELSE IF (error /= MPI---SUCCESS) THEN

CALL fail (error)
END IF

Programming with MPI – p. 8/??

C Multiple Errors

int i , error , requests [100] ;

MPI---Status statuses [100] ;

error = MPI---Waitall (100 , requests , statuses) ;

if (error == MPI---ERR---IN---STATUS) {

for (i = 1 ; i < 100 ; ++i) {
if (statuses[i] . MPI---ERROR !=

MPI---SUCCESS)

fail (statuses[i] . MPI---ERROR)

}
else if (error != MPI---SUCCESS)

fail (error) ;

Programming with MPI – p. 9/??

Completion Oddities (1)

There are actually some exceptions to the above
• You can avoid them by not causing them

The facilities are described (briefly) later

• Persistent requests are not released
you have to release them yourself

This course doesn’t describe these in detail

• Cancellation is different from completion
the request merely becomes inactive

You still have to complete or release it

Programming with MPI – p. 10/??

Completion Oddities (2)

Requests become inactive in only three ways:

1. Setting MPI---REQUEST---NULL explicitly

2. Passing an already completed request
3. Using cancellation (see later)

Multiple completion unavoidably causes 2
• Either remove them from the request array
• Or you can learn more about the functions

It isn’t hard, but each group is different

Programming with MPI – p. 11/??

Inactive Requests (1)

We first consider the individual request forms

Wait and test work on inactive requests
• they return immediately and successfully
• the status is set to empty

Programming with MPI – p. 12/??

Inactive Requests (2)

We next consider the any forms

If none of the requests are active
Including the case of a zero length request array

• they return successfully and immediately
• the index is set to MPI---UNDEFINED
• the status is set to empty

Otherwise, they consider just the active requests

I.e. very like the individual request forms

Programming with MPI – p. 13/??

Inactive Requests (3)

We now consider the all forms

If none of the requests are active
Including the case of a zero length request array

• they return successfully and immediately

Otherwise, they consider just the active requests

• In both cases, all statuses corresponding to
inactive requests are set to empty

Programming with MPI – p. 14/??

Inactive Requests (4)

We last consider the some forms

If none of the requests are active
Including the case of a zero length request array

• they return successfully and immediately
• the index count is set to MPI---UNDEFINED

Otherwise, they consider just the active requests

• The index array is only completed requests
i.e. ones completed by this call

• Only completed requests have statuses

Programming with MPI – p. 15/??

Inactive Requests (5)

The above all looks like unnecessary complexity

• But it isn’t – MPI has got it right

It means that you can write clean, obvious code
And everything will all work as it should

Programming with MPI – p. 16/??

Cancellation (1)

This is just an overview of the facility

You may need to abandon active requests
⇒ Try to avoid ever getting into that hole

• Cancellation is for exceptional circumstances
It may be both unreliable and inefficient

MPI---Cancel will start the cancellation
• It will not release the request

Programming with MPI – p. 17/??

Cancellation (2)

You must still call MPI---Wait or MPI---Test

Or one of the request array versions of those

• MPI---Test---cancelled checks the status

Returns a flag saying if the cancellation succeeded

• If you use cancellation, test that first
All other status fields are undefined if cancelled

Programming with MPI – p. 18/??

Cancellation (3)

You can also simply release the request
By calling MPI---Request---free

You can also call this on active requests
They will be disconnected, but will complete
• DON’T do that – not even for sends

You have no way of telling when they complete
And what happened when they finally do

Programming with MPI – p. 19/??

	More on Completion
	Empty Statuses
	Completion of Subsets (1)
	Completion of Subsets (2)
	Error Codes (1)
	Error Codes (2)
	Fortran Multiple Errors
	C Multiple Errors
	Completion Oddities (1)
	Completion Oddities (2)
	Inactive Requests (1)
	Inactive Requests (2)
	Inactive Requests (3)
	Inactive Requests (4)
	Inactive Requests (5)
	Cancellation (1)
	Cancellation (2)
	Cancellation (3)

