Programming with MPI

Advanced Completion Issues

Nick Maclaren

May 2008

More on Completion

More on Point-to—-Point made simplifying assumptions
This describes when those are not so
Three more advanced features complicate things

Waiting for a subset of requests (described shortly)

Cancellation of requests (described shortly)
Persistent requests (described in a later lecture)

I don’t recommend using any of these
But this is a description of the issues

Empty Statuses

MPI has the concept of an empty status

An empty status looks like the following:
The tag is MPI_ANY _TAG

The source is MPI_ANY SOURCE
[= or possibly MPI_PROC_NULL]
MPI_Get_count returns zero

And, for properties we haven’t covered yet:
The error code is MPI_SUCCESS

MPI Test cancelled returns False

Completion of Subsets (1)

MPI_Testsome and MPI_Waitsome

These check for or complete of the requests
and return a count of how many
plus arrays of indices and statuses

For wait and when test’s flag is True:
The index array lists the completed requests

First count elements of the status array are set
The other statuses are not defined

Completion of Subsets (2)

If not enough of the requests are ready
The tests set their flag to False
The waits hang until something happens

If enough of the requests are ready
Any completes just one request
Some/all complete all ready requests
The tests set their flag to True

All completed requests are released exactly
as for the individual request forms

Error Codes (1)

What if not using MPI_ERRORS_ARE_FATAL?
Multiple errors from the all and forms

One of the many reasons the default is easiest

The error code may be MPI_ERR_IN_STATUS

The individual error codes are in the statuses
Including the empty statuses of the all forms

Error Codes (2)

<status array> (MPI_ERROR , <index>) (Fortran)
<status array> [<index>]. MPI_ERROR (C)

The MPI_ERROR fields are set if and only if:

® You call one of the all or some forms
e TIts errorcodeis MPI_ERR IN_ STATUS

That field is never set for the any forms
I.e. exactly like the individual request forms
They will never return MPI_ERR_IN_STATUS

Fortran Multiple Errors

INTEGER :: i, error , requests (100) , &
statuses (MPI_STATUS_SIZE , 100)

CALL MPI_Waitall (100 , requests , statuses , error)
IF (error == MPI_ERR_IN_STATUS) THEN
DOi=1,100
IF (statuses (MPI_ERROR , i) /= &
MPI_SUCCESS) THEN
CALL fail (statuses (MPI_ERROR, i))

END IF
END DO
ELSE IF (error /= MPI_SUCCESS) THEN

CALL fail (error)
END IF

C Multiple Errors

inti, error, requests [100] ;
MPI_Status statuses [100] ;

error = MPI_Waitall (100 , requests , statuses) ;
if (error == MPI_ERR_IN_STATUS) {
for(i=1;i<100; ++i) {
if (statuses[i] . MPI_ERROR |=
MPI_SUCCESS)
fail (statuses][i] . MPI_ERROR)

}
else if (error |= MPI_SUCCESS)

fail (error) ;

Completion Oddities (1)

There are actually some exceptions to the above
You can avoid them by not causing them

The facilities are described (briefly) later

Persistent requests are not released
you have to release them yourself
This course doesn’t describe these in detall

Cancellation is different from completion
the request merely becomes inactive
You still have to complete or release it

Completion Oddities (2)

Requests become inactive in only three ways:
Setting MPI_REQUEST_NULL explicitly

Passing an already completed request
Using cancellation (see later)

Multiple completion unavoidably causes
Either remove them from the request array
Or you can learn more about the functions

It isn’t hard, but each group is different

Inactive Requests (1)

We first consider the individual request forms

Wait and test work on inactive requests
they return immediately and successfully
the status is set to empty

Inactive Requests (2)

We next consider the forms

If none of the requests are active

Including the case of a zero length request array
they return successfully and immediately
the index is set to MPI_UNDEFINED

the status is set to empty

Otherwise, they consider just the active requests

I.e. very like the individual request forms

Inactive Requests (3)

We now consider the all forms

If none of the requests are active

Including the case of a zero length request array
they return successfully and immediately

Otherwise, they consider just the active requests

In both cases, all statuses corresponding to
iInactive requests are set to empty

Inactive Requests (4)

We last consider the forms

If none of the requests are active

Including the case of a zero length request array
they return successfully and immediately
the index count is set to MPI_UNDEFINED

Otherwise, they consider just the active requests
The index array is only completed requests

I.e. ones completed by this call
Only completed requests have statuses

Inactive Requests (35)

The above all looks like unnecessary complexity
Butitisn® — MPI has got it right

It means that you can write clean, obvious code
And everything will all work as it should

Cancellation (1)

This is just an overview of the facility

You may need to abandon active requests
= Try to avoid ever getting into that hole

Cancellation is for exceptional circumstances
It may be both unreliable and inefficient

MPI_Cancel will start the cancellation
It will not release the request

Cancellation (2)

You must still call MPI_Wait or MPI_ Test
Or one of the request array versions of those

MPI Test cancelled checks the status
Returns a flag saying if the cancellation succeeded

If you use cancellation, test that first
All other status fields are undefined if cancelled

Cancellation (3)

You can also simply release the request
By calling MPI_Request_free

You can also call this on active requests
They will be disconnected, but will complete
DON’T dothat — not even for sends

You have no way of telling when they complete
And what happened when they finally do

	More on Completion
	Empty Statuses
	Completion of Subsets (1)
	Completion of Subsets (2)
	Error Codes (1)
	Error Codes (2)
	Fortran Multiple Errors
	C Multiple Errors
	Completion Oddities (1)
	Completion Oddities (2)
	Inactive Requests (1)
	Inactive Requests (2)
	Inactive Requests (3)
	Inactive Requests (4)
	Inactive Requests (5)
	Cancellation (1)
	Cancellation (2)
	Cancellation (3)

