Mathematica

Numerical Linear Algebra

Nick Maclaren

nmm1@cam.ac.uk

October 2008

Please Interrupt

This course assumes a fair amount of background

. that you already know some Mathematica
E.g. the arcane syntax and error handling

. that you already know some linear algebra
At least up to elementary use of matrices
It will refer to a bit more, but will explain

If you don’t understand, please interrupt
Don’t feel afraid to ask any question you want to

Beyond the Course

Mathematica/

http://reference.wolfram.com/mathematica/ ...
.../guide/Mathematica.htmi

Logging In

®* No practicals, as such, but are examples
Recommended to try them as I describe the topics
Can use cut-and-paste from file Examples 1.ixt

If using Microsoft Windows, find mathematica
Somewhere in Applications

If not using Microsoft Windows, CTRL-ALT-DEL
Select Restart, then Linux and log in
Start by mathematica or math

You should also display Examples_1.ixt

What Is Linear Algebra?

Could call it the arithmetic of matrices
It’s more general than you might think

Need to explain some mathematics
Don’t Panic — it will be over-simplified!

You can do a great deal in Mathematica
Far more than in packages like Matlab

As always, follow the motto “ &
” —l.e. start with simple uses

Structure Of Course

Overview of what analyses are possible
Basic matrix facilities in Mathematica

Real and complex linear algebra

Summary of more advanced matrix facilities

()

Examples of symbolic linear algebra
Development and debugging techniques

What Are Matrices?

Effectively a rectangular grid of elements

1.2 2.3 3.4 4.5
5.6 6.7 7.8 8.9
9.0 0.1 1.2 2.3

1-D matrices are also called vectors

n-D matrices are also called tensors
Won’t cover them, but they are easy to use

Yes, mathematicians, I know — over-simplification!

Elements of Matrices

These are not limited to real numbers
Can actually belong to any mathematical field
Examples:

Real (®) or complex (C) numbers
Ratios of integers (rational numbers)
Ratios of polynomials/multinomials
And more

That’s almost all we are going to use, though
All most scientists want to work with

Symbolic and Rational Matrices

matrix operations work as usual
I.e. combinations of +, — and *

Others (e.g. eigenvalues) may change element type

Others (e.g. determinant) merely run like drains
Often , where N is number of elements

So proceed very cautiously
This course will give some guidelines

Integer Matrices etc.

Elements can be an Abelian (commutative) ring
E.g. integers (Z) or polynomials
Difference is an Abelian ring has no division

matrix operations work as usual
Others ones may change the element type
Or they may run more slowly than you expect

Eigenvalues [{{1,2,3},{4,5,6},{7,8,9}}]

3 (5 + Sart[33]) 3 (5 - Sqrt[33])

Reminder

123456789 is an integer

12345/6789 is an rational number
12345.6789 is a real number
123.45+678.9*1 is a complex number

123.45+678.9*p Is a polynomial

What Can We Do?

All of basic matrix arithmetic, obviously
Including some quite complicated operations

Solution of simultaneous linear equations
Eigenvalues and eigenvectors
Matrix decompositions of quite a few types

Plus (with more hassle) their error analysis

Fourier transforms are just linear algebra, too

Physics, Chemistry etc.

Anything expressible in normal matrix notation
That’s almost everything, really!

But that isn’t always practically possible
Mathematica slower than NAG or even Matlab

Working with expressions can be much slower
E.g. may need Cramer and not Cholesky

But you can often get much more information
So the approaches are complementary

Statistical Uses

Regression and analysis of variance
Multivariate probability functions

Calculating the errors is the tricky bit
It'’s NOT the same as in most physics!

Also Markov processes — finite state machines
This Is where transitions are probabilistic
Working with these is just more matrix algebra

Standard textbooks give the matrix formulae
You just carry on from there ...

Mathematica and Matrices

Will describe how Mathematica provides them
And explain how to construct and display them

And perform other basic matrix operations

Matrix Notation (1)

Conventional layout of a matrix A
Multiplied by a 3 vector

11 12 13 / 290
21 22 23 X 8 -> 530
31 32 33 9 /770
41 42 43 1010

As o IS the value 32
5301821 X 7 +22 x 8 +23 X 9

Matrix Notation (2)

Now we do the same thing in Mathematica

a={{
b={7,8,9}
TableForm [a]
11 12 13
21 22 23
31 32 33
41 42 43

a[[3,2]] -> 32
a.b -> {290,530,770,1010}

Notation 1n Papers

There are a zillion — one for each sub-area
‘Standard’ tensor notation has changed, too
Here is another over-simplification

, A', A or Ais a vector
may also refer to element | of vector

or IS a matrix

often means

Algorithms may use or and or

Row Major or Column Major?

I find those terms seriously confusing
We want to know which subscript varies fastest

* Mathematica is like Matlab and C
Last subscript varies fastest

a={{11,12,13},{21,22,23},{31,32,33})
al[3,2]] -> 32

Warning: Fortran is different!

Index Ranges (1)

Mathematica calls this the Span function
It works inside indices only

a;;b means all values fromatob

a=Range[10]
{ 3,4,95

96979899710}
Span[5,7] -> 537

a[fs5;71]] - {5,6,7}
al[[Span[5,7]]] -> {5,6,7}

Index Ranges (2)

You can omit either or both of a and b

a;;5;§]] -> {5,6,7,8,9,10}
al[;;9]] - {1,2,3,4,5]}
all; 1l - {19293743536779899910}

A third argument sets a step

al[3;852]] > {3,5,7]
a[[Span[3,8,2]]] > {39577}

Matrices as Lists (1)

We can input a list of values

d

{9.8,8.7,7.6,6.5,5.4,4.3,3.2,2.1,1.0}

b={{1.2,2.3,3.4,45},{5.6,6.7,7.8,8.9},

{
9.0,0.1,1.2,2.3}}// TableForm

1.2 2.3 3.4 4.5

5.6 6.7 7.8 8.9

9. 0.1 1.2 2.3

Matrices as Lists (2)

Values need not be simple numbers
c={{1+x"2,x*y},{-x*y,T+y"2}}

2 2
({T+X , Xy}, {-(Xxy),1+y}]

TableForm [¢]

2
1+X Xy
2

-(Xy) 1+y

Matrix Constructors (1)

a = ConstantArray [p+q9 ,{5}]
{p+q,p+q,p+qg,p+qg,p+q}

a = ConstantArray [p+q ,{2,2}]
{{p+a,pPp+q},{P+q,P+q}]

a = IdentityMatrix [3]
{{1,0,0},{0,1,0},{0,0,1}}

a = DiagonalMatrix [{P ,Q, R }]
{{P,0,0},{0,Q,0},{0,0,R}]

Matrix Constructors (2)

a = HilbertMatrix [3]

({1 Fst byt 8

ol =

1 1
Ty T
3 4

N

1 1 1 1
s Ty B
2 3 2 3

HankelMatrix, ToeplitzMatrix, RotationMatrix,
ScalingMatrix, ShearingMatrix, ReflectionMatrix,
UnitVector, Range, RandomReal, ...

® Look them up when and if you need them!

Importing from Matlab (1)

Let’s create a MAT format file in Matlab

A=[1.0,2.1,3.2;4.3,5.4,6.5;7.6,8.7,9.8]
A =

1.0000 2.1000 3.2000

4.3000 5.4000 6.5000

7.6000 8.7000 9.8000

B=[1.23,4.56,6.78]
B =
1.2300 4.5600 6.7800

save matthew A B

Importing from Matlab (2)

c = Import ["matthew.mat"]
{({{1.,2.1,3.2},{4.3,5.4,6.5},
{7.6,8.7,9.8}},{{1.23,4.56,6.78}}}

a=cl[[1]]
({1.,2.1,3.2},{4.3,5.4,6.5},{7.6,8.7,9.8}}

b=c[[2]][[1]]
{1.23,4.56,6.78}

Don’t ask me why the vector becomes a matrix
It may well be a bug and fixed in next version

Importing, Generally

There are a zillion other import/export formats
A documentation page ‘‘Listing of All Formats”

Don’t trust import/export without testing
The Matlab example didn’t work in Mathematica 6.0

Very often a version incompatibility problem
E.g. Matlab makes an incompatible change ...
Or Mathematica assumes something that ain’t so

Applies to ALL combinations of applications

Importing in CSV

For your data, consider “Comma Separated Value”

1.0, 2.1, 3.2
4.3, 5.4, 6.5
7.6, 8.7, 9.8

Import ["matthew.csv"]

{{1.,2.1,3.2},{4.3,5.4,6.5},{7.6,8.7,9.8}}

This course does not cover Mathematica’s I/0
You need that for anything more advanced

‘ab
‘ab
‘ab
‘ab

@ ® d® D

Tab
Tab
Tab
Tab
Tab

Matrices from Expressions (1)

expr,{count}] = ConstantArray[expr,count]
‘expr,{var,count}] sets var to 1...count
expr,{var,lwb,upb}] sets var to Iwb...upb
expr,{var,lwb,upb,step}] increments by step

(1.23,{3}] > {1.23,1.23,1.23}
n*"2,{n,5}] > {1,4,9,16,25}
n*"2,{n,3,5}] -> {9,16,25}
n*"2,{n,1,5,3}] -> {1,16}

Tab

® ® d Dd® D D

| 3}
:n"2,{n,1,5,—3}] -> {}
n*"2,{n,5,1,-3}] -> {25,4}

Matrices from Expressions (2)

Repeated loop terms give a nested list
The last term varies fastest

Table[n*2+100*2*"m,{m,3},{n,5}]
{{201,204,209, 216,225},
{401,404 ,409, 416,425},
{801,804,809,816, 825} }
Table[n*2+100*2* "M ,{m,3},{n,m}]

{{201},{401,404},{801,804,809}}

Matrices from Expressions (3)

Table[p*"mM+g*n,{m,3},{n,3}]/ TableForm

2 3
P+d P+gq P+(

2 2 2 2 3
P+ P +QqQ p +(¢

3 3 2 3 3
P+9 P+ P +(¢

There is also a related Array function
I find it more confusing and more restrictive

Displaying Arrays

We have used TableForm several times already
It works for any number of dimensions

MatrixForm and Grid are near-synonyms
The differences are visible only in GUI mode

Row is the default display mode, as above
Column is on separate lines, by first dimension

There are also graphical display facilities
I don’t mean graph-drawing ones — see ArrayPlot

Elementwise Arithmetic (1)

The basic ‘numeric’ operations: +, -, * and "
Normal mathematical functions: Exp, Sin etc.

Obviously, the matrix shapes must match exactly
But you can combine matrices and scalars

a={{Pi,x+y"2},{y/x,0}}
TableForm [Sin[a + Pi/2]]
2
-1 Cos[Xx+V]
y
Cos [-]
X 1

Elementwise Arithmetic (2)

The error handling is not nice at all

a={{Pi,x+y},{x*y,0}}
b={Pi,x+y,x*y,0}
Sine[a+Db]

Thread::tdlen: Objects of unequal length in
{({Pi,x+y},{xy,0}}+{Pi,x+y,xy,0}cannotbe
combined.

Sine [{{Pi,x+y},{xy,0}}+{Pi,x+y,xy,0}]

So develop your program in parts, checking each

Elementwise Arithmetic (3)

a={{x*"2-y*"2,x"3+y"3},
{x*"3+y*"3,x"3-y"3}}

b={{x-y,x+y},{x+y,x-y}}

Cancel[a /b]// TableForm

2 2
X+Yy X =XYy+Yy

2 2 2 2
X =XYy+Y X +XYy+Yy

True Matrix Operations

Matrix multiplication is the dot product (.)
You may prefer to use the Dot function

Dot[a,b,c] -> a.b.c

It works the same for vectors and matrices
You have to match dimensions, of course

t11,2},{3,4},{5,6}]
19,8]

a
b

a.b -> {25,59,93]}

Vector Operations

You can do most of the usual ones

a=Normalize [{1.0,2.0, 3.0}]
{0.267261 , 0.534522 , 0.801784 }
Norm[a]

1.

Cross, Total, VectorAngle, Projection,
KroneckerProduct, Orthogonalize, ...

Orthogonalize is simple for real and complex ONLY

Simple Matrix Operations

You can do most of the usual ones

a=Transpose [{{p,q},{r,s}}]
{{p,r},{qa,s}}

Tr[a] (* Note that this is the trace *)
P+S

There aren’t all that many more simple ones

ConjugateTranspose, KroneckerProduct, ...

Enquiry Function

Dimensions returns the vector of dimensions
Dimensions [{1,4,7}] -> {3}
Dimensions [{{1,2},{3,4},{5,6}}] -> {3,2}

a=Table[n*2+100*2*M,{m,3},{n,m}]
{{201},{401,404},{801,804,809}}

Dimensions[a] -> {3}

Matrix Powering

You have matrix powering and exponential
MatrixPower [{{1,x},{y,1}},3]

{({1+3xy,2x+x(1+xy)},
{2y +y (1T +xy),1+3xy}}

MatrixExp [{{1.0,2.0},{3.0,4.0}}]

{{51.969 ,74.73661,{112.105 , 164.074 } }

MatrixExp is simple for real and complex ONLY

Numeric Linear Algebra

For now, we consider only real and complex
That is in IEEE 754 64-bit format — sig. figs

This has some special mathematics to itself
Can do a lot more than for general matrices

Generally, Mathematica is “‘automagical’
Doesn’t ask questions — just delivers the answer

You can do specific analyses if you want, though

Matrix Inversion and Division

Division and inversion are mathematically tricky
There is an Inverse function when you need it

DON’T invert matrices unless you have to!
Solving equations is usually the right approach

But you often need to in multivariate statistics

You can also get the Pseudolnverse if wanted

Inverse

Inverse [{{1.2,3.4},{5.6,7.8}}]
{{-0.805785,0.35124},{0.578512 , - 0.123967 } }

Inverse[{{1.2-1,3.4},{56,7.8+2.0*1}}]

{{-0.802157 + 0.3036 1, 0.296248 - 0.208299 1},
{0.487938 - 0.343081 1,
- 0.0432936 + 0.1606491 } }

}

Inverse[{{1.2,3.4}, b}
1 .4, 6.8}} Is singular.

{2.4,6.8
Inverse::sing: Matrix {{ 2, }, {2
,{2.4,6.8}}]

Pseudolnverse [{{ 1.2, 3.4}
} 0.0523077,0.104615} }

4
{{0.0184615, 0. 03692 {

?

Determinant

Even insane requests usually work

Det[{{1.2,3.4},{5.6,7.8}}]
-9.68

Det[{{1.2-1,3.4},{5.6,7.8+2.0*%1}}]
-7.68 -5.41

Det [HilbertMatrix [2000] * 1.0]

-34079
-7.552209418370832 10

Enquiry Functions

HermitianMatrixQ tests for being Hermitian
And, similarly, PositiveDefiniteMatrixQ

Warning: answer is not numerically well-defined
PositiveDefiniteMatrixQ [1.0 * HilbertMatrix [10]]
True
PositiveDefiniteMatrixQ [1.0 * HilbertMatrix [20]]

False

Rank And Null Space

You can calculate the rank directly
And a set of vectors spanning the null space
[the ones corresponding to zero eigenvalues |

But neither is well-defined, numerically
a = HilbertMatrix [100] * 1.0 ;

{ MatrixRank[a], MatrixRank[a.a]}
{18,10}

Dimensions [NullSpace [a . a]]
{90,100}

Linear Equations (1)

Just Do It ...

a={{ 42, 22,-39, 9.3, 0.1},
{8.6, 0.0, 0.7, -2.3, -0.3},
{84, -59, -8.1, 9.6, 3.8},
(-0.8, -9.4, -9.9, 9.9, 5.0},
(-1.3, -8.1, 06, -9.2, -7.3}}

b={-68,23,2.7,-7.0,2.0}
LinearSolve [a , b]

{1.45411 , -12.4949 , 24.507/8 , 11.8408 , 0.422917 }

Linear Equations (2)

Complex matrices are equally easy

a={{42+221,-39+9.3I, 0.1+0.0I},
{8.6+0.0I, 0.7 -2.31, 0.0-0.31},
(8.4 -5.9I, -8.1+9.61, 3.8-0.81}}

b={-68+231,2.7-7.01,2.0+0.01}
LinearSolve [a , b]

{0.0361936 - 0.531091 1, 0.719502 + 0.614737 1,
4.02693 + 1.57063 1 }

Linear Equations (3)

Insoluble problems get a suitable diagnostic
LinearSolve [{{1.2,3.4},{2.4,6.8}},{1.0,1.0}]

LinearSolve::nosol: Linear equation encountered that has
no solution.

LinearSolve [HilbertMatrix [10] * 1.0, \
RandomReal [{-1.0,1.0},{10, 10}]

LinearSolve::luc:
Result for LinearSolve of badly conditioned matrix

{{1., 0.5, 0.333333, 0.25, <<4>>, 0.111111, 0.1}, ...
may contain significant numerical errors.

Linear Equations (4)

Don’t rely on its diagnostics, though!
a={{1.0,1.0},{1.0,1.0}}

a.{1.0,0.0}
{1.,1.}

a.{0.0,1.0}
{1.,1.}

LinearSolve [a, {1.0, 1.0}]
{0.5,0.5}

Decompositions

If you are using the same matrix many times
With lots of different right hand sides
LinearSolveFunction may be faster

You can also generate decompositions directly:

LUDecomposition, CholeskyDecomposition,
SingularValueDecomposition, QRDecomposition,
SchurDecomposition, JordanDecomposition,
HessenbergDecomposition, ...

Fourier Transforms (1)

a={-0.92,9.1,2.3,5.7,4.9,-2.8,-5.6,
6.7,-7.0,9.0}

b = Fourier[a]
{6.76095 + 0.1, 3.73317 +4.466491,
- 1.44596 - 1.2133 1, 3.13213 + 1.6452 1,
-4.87543 - 5.080821,-10.7581 + 0.1,
-4.87543 + 5.030821,3.13213 - 1.64521,
- 1.44596 + 1.21331, 3.73317 - 4.46649 1}

Fourier [b]
{-0.92,9.,-7.,6.7,-5.6,-2.8,4.9,5.7,2.3,9.1}

Fourier Transforms (2)

Mathematica doesn’t call them linear algebra
Under Image Processing and Signal Processing

There is also an inverse, InverseFourier

You can generate only the cosine or sine parts
FourierDCT, FourierDST

There are also several related facilities

Eigenvalues (1)

Things start to get a bit hairier, here
That i1s because the mathematics does

All square matrices have all eigenvalues
But real matrices may have complex eigenvalues

All real symmetric matrices have all eigenvectors
As do all complex Hermitian ones
Not all other matrices do, though

Eigenvalues (2)

Simple use is, er, simple

. 2.2,-39, 9.3, 0.
0.0, 0.7, -2.3, -0.
. _5.9,-81, 9.6, 3.8},
. _9.4,-99, 9.9, 50},
-84, 06, -9.2, -7.31)

11,
3},
8

Eigenvalues [a]

{6.45845 + 9.89753 1 , 6.45845 - 9.89753 1 ,
- 7.28396 + 4.45457 1, - 7.28396 - 4.45457 1 ,
0.351016)

Eigenvalues (3)

Eigenvectors[a] (* omitted as it is a bit messy *)
Eigenvalues [HilbertMatrix [3] * 1.0]

{1.40832 , 0.122327 , 0.00268734 }

Eigenvectors [HilbertMatrix [3] * 1.0]

- 0.827045 - 0.459864 - 0.323298

0.547448 -0.52829 - 0.649007/
0.127659 -0.713747 0.688672

Eigenvalues (4)

a={{42+221,-3.9+9.31,0.1+8.61},
{0.0+0.71,-2.3-0.31,8.4-5.91},
{-8.1+9.61,3.8-0.81,-9.4-9.91}}

Eigenvalues [a]

{3.66761 - 13.7127 1, -12.3134 - 3.43015 1 ,
1.1458 + 9.14282 1}

Eigenvectors[a] (* omitted as it is a bit messy *)

Eigenvalues (5)

Again, don’t rely on the diagnostics
a={{1.0,1.0},{0.0,1.0}}

Eigenvalues [a|]

{1.,1.}

Eigenvectors [a]

111.,0.},{0.,0.}}

That can cause chaos if you use the second one

Characteristic Polynomial

Eigenvalues are the roots of that
You can calculate it directly, if you want

. 2.2,-3.9, 9.3,
. 0.0, 0.7, -2.3, -
b

0.1},

- 0.
-59, -84, 9.6, 3.

5.

1
3},
81},

. -9.4,-9.9, 9.9, 50},
. -84, 06, -9.2. -7.3})

CharacteristicPolynomial[a , p]

2 3 4 5
3574.06 -9798.33 p-1084.54p -23.82p -1.3p -p

Singular Values (1)

SVD or Singular value decomposition
Essentially an extension of eigenanalysis

Gives the same results in the simple cases
I.e. square matrices with all eigenvectors

Also handles non-square matrices
And ones with missing eigenvectors

If you don’t know it, don’t worry about it
But it’s an important technique in many fields

Singular Values (2)

Try the following with a variety of matrices a

Eigenvalues [a]
SingularValuelList [a]

Eigenvectors [a]
b = SingularValueDecomposition [a]
b[[1]].b[[2]]. Transpose [b[[31]]]

Singular Values (3)

a = HilbertMatrix [3] * 1.0

Eigenvalues [a]
{1.40832, 0.122327 , 0.00268734 }

SingularValuelist [a]
{1.40832, 0.122327 , 0.00268734 }

Eigenvectors [a]

- 0.827045 -0.459864 - 0.323298
0.547448 -0.52829 - 0.649007
0.127659 -0.713747 0.688672

Singular Values (4)

b = SingularValueDecomposition [a]
{{{-0.827045, 0.547448, 0.127659},
{-0.459864 , - 0.52829 , -0.713747},
{-0.323298 , - 0.649007 , 0.688672}},
{{1.40832,0.,0.},{0.,0.122327,0. },
{0.,0.,0.00268734}},
{{-0.827045, 0.547448, 0.127659},
{-0.459864 , - 0.52829 , -0.713747},
{-0.323298 , - 0.649007, 0.688672}}}

b[[1]].b[[2]]. Transpose [b[[31]]]
{{1.,0.5,0.333333},{0.5,0.333333, 0.25},
{0.333333,0.25,0.2}}

Singular Values (5)

a={{1.0,1.0},{0.0,1.0}}

SingularValuelist [a]
{1.61803, 0.618034 }

b = SingularValueDecomposition [a]
{{{-0.850651, -0.525731 } ,
{-0.525731, 0.850651}},
{{1.61803,0.},{0.,0.618034}},
{{-0.525731, - 0.850651 },
{-0.850651, 0.525731}}}

b[[1]].b[[2]]. Transpose [b[[31]]]
{{1.,1.},{0.,1.}}

A Bit of Numerical Analysis

Very roughly, the error in linear algebra is:

Where 1V is the size of the matrix
IS how ‘nasty’ the matrix is
IS the error in the values

Almost always, the main error is in the input data
Good linear algebra algorithms are very accurate

Rounding error isn’t usually the problem

Real vs Floating-Point

See “ ?
Only significant problem is loss of accuracy

Not going to teach much numerical analysis
But it’s well-understood for much of linear algebra

Mathematica allows choice of precision — ahal
Should make it possible to do some easy checking

Unfortunately, it’s not easy to use

Arbitrary Precision (1)

1.23'50 i1s 0.123 with 50 sig. figs

N[expression,P] evaluates ‘expression’ in P sig. figs
So does SetPrecision[expression,P], but differently
Block[{$MinPrecision=P,$MaxPrecision=P},expr.]

Precision[expression] indicates the actual precision
sometimes the storage precision
and sometimes the estimated significance

* I haven’t found any precise specifications

Arbitrary Precision (2)

Precisions are reduced, unlike most languages
e.g. Precision[1.23'50*%4.56°100] -> 50

Plain numbers (e.g. 1.23) are MachinePrecision
That is somewhere between 15 and 18 digits

I haven’t found any way of extending precision

Use arbitrary precision with great care
And NEVER use plain real numbers

Unfortunately, almost useless for imported data

Solution of Equations (1)

Let’s look at a classic numerically foul problem
The Hilbert matrix is positive definite
And horribly ill-conditioned ...

But, in rational arithmetic, the result is exact

a = HilbertMatrix [10]
b = ConstantArray [1, 10]

c = LinearSolve[a, b]
{-10, 990, -23760 , 240240 , -1261260 , 3783780 ,

-6726720 , 7001280 , -3938220 , 923780 }

Solution of Equations (2)

{-10, 990, -23760, 240240, -1261260, 3783780,
6726720, 7001280, -3938220, 923780 }

Now we do it in floating-point

d = LinearSolve [a + 0.0, b]
6
{ -9.99792 , 989.82 , -23756.2 , 240205. , -
-1.26109 10,
6 6 6
3.78332 10, -6.72597 10, 7.00056 10,
6
-3.93784 10, 923697. }

Solution of Equations (3)

{10,990 , -23760 , 240240 , 1261260 , 3783780 ,
6726720 , 7001280 , ~3938220 , 923780 }

Now we do it in extended precision

d=N|[LinearSolve [N[a,30],b], 6]
6
{ -10.0000 , 990.000 , -23760.0 , 240240. , -
-1.26126 10,

6 6 6
3.78378 10, -6.72672 10 , 7.00128 10,
6

-3.93822 10 , 923780.}

Error Analysis

Traditionally, this is overall error analysis
Usually in terms of norms etc.
It is a well-understood area, with useful results

Use the formulae for it in books etc.
Mathematica helps with non-standard analyses
Understanding specific points in more detail

Covered in the second half of this course

Linear algebra with symbolic matrices

Manipulating Arrays

There are a lot of facilities for manipulating arrays
Minors calculates the matrix of minors

You can reshape them using ordinary indexing
But using built-in functions is preferable

Part, Take, Drop, Diagonal, RotatelLeft, RotateRight,
Reverse, Join, Position, Extract, ReplacePart

Sparse Arrays

SparseArray creates a sparse array from rules
ArrayRules creates rules from an array
Normal converts a sparse array to dense form

CoefficientArrays creates a sparse array
from a multinomial

And More

There are some functions for optimisation
There’s almost certainly stuff I haven’t found

Most will be fairly specialist

If you want to work with symbolic matrices
PLEASE ask for it on your green form

It’s not easy, but can be very useful

	Please Interrupt
	Beyond the Course
	Logging In
	What Is Linear Algebra?
	Structure Of Course
	What Are Matrices?
	Elements of Matrices
	Symbolic and Rational Matrices
	Integer Matrices etc.
	Reminder
	What Can We Do?
	Physics, Chemistry etc.
	Statistical Uses
	Mathematica and Matrices
	Matrix Notation (1)
	Matrix Notation (2)
	Notation in Papers
	Row Major or Column Major?
	Index Ranges (1)
	Index Ranges (2)
	Matrices as Lists (1)
	Matrices as Lists (2)
	Matrix Constructors (1)
	Matrix Constructors (2)
	Importing from Matlab (1)
	Importing from Matlab (2)
	Importing, Generally
	Importing in CSV
	Matrices from Expressions (1)
	Matrices from Expressions (2)
	Matrices from Expressions (3)
	Displaying Arrays
	Elementwise Arithmetic (1)
	Elementwise Arithmetic (2)
	Elementwise Arithmetic (3)
	True Matrix Operations
	Vector Operations
	Simple Matrix Operations
	Enquiry Function
	Matrix Powering
	Numeric Linear Algebra
	Matrix Inversion and Division
	Inverse
	Determinant
	Enquiry Functions
	Rank And Null Space
	Linear Equations (1)
	Linear Equations (2)
	Linear Equations (3)
	Linear Equations (4)
	Decompositions
	Fourier Transforms (1)
	Fourier Transforms (2)
	Eigenvalues (1)
	Eigenvalues (2)
	Eigenvalues (3)
	Eigenvalues (4)
	Eigenvalues (5)
	Characteristic Polynomial
	Singular Values (1)
	Singular Values (2)
	Singular Values (3)
	Singular Values (4)
	Singular Values (5)
	A Bit of Numerical Analysis
	Real vs Floating-Point
	Arbitrary Precision (1)
	Arbitrary Precision (2)
	Solution of Equations (1)
	Solution of Equations (2)
	Solution of Equations (3)
	Error Analysis
	Manipulating Arrays
	Sparse Arrays
	And More

