
Mixed Language Linking

Nick Maclaren

nmm1@cam.ac.uk

February 2007

Mixed Language Linking – p. 1/??

Overview of Course

Mainly the principles, and where to look

Details vary with system, compiler and versions
Will describe how to select a feasible task

Firstly, what language mixing is possible
Secondly, some other practical issues
Thirdly, Fortran and C in more detail

Mixed Language Linking – p. 2/??

Beyond the Course

• This is an area where experience really helps

Some references given in context
Look at the Programmer’s Guides or similar
For both compilers, and your system
Few generic documents are worth bothering with

Mixed Language Linking – p. 3/??

Rule Number 1

• KISS – Keep It Simple and Stupid

If you try to be clever,
you WILL shoot yourself in the foot

Simple use very often works, easily
• Even so, there are NO safe recipes
This course is about understanding the issue

Mixed Language Linking – p. 4/??

Why Link Multiple Languages?

• Usually to get access to system interfaces
Very rarely needed in Python, Perl etc.
Functions are typically very simple

Later, will give Fortran to C examples
Get high--precision (microsecond) timestamp
Get environment variable, if not in library

Mixed Language Linking – p. 5/??

Extend Language Features

• Usually just an extra primitive
Like above, such functions are usually simple

• Commonly, using C for special I /O
This is how MPI etc. are implemented

• Beyond that is typically task for experts
E.g. writing floating--point emulator for Python

Mixed Language Linking – p. 6/??

Joining Applications Together

• Strongly advise you to avoid this
Always tricky – and can be fiendish
Better to keep them separate processes

MultiApplics/

• May need to write special I /O functions
But that is generally easier (see above)!

Mixed Language Linking – p. 7/??

Language Combinations

• Only some combinations are feasible
Some others are possible with some compilers
Question of how much skill & effort you need

• Will describe only plausible combinations
Ones NOT assuming advanced hacking skills

Even for these, can be very compiler--dependent
• Portable mixed--language linking can be hard

Mixed Language Linking – p. 8/??

Masters and Servants

• Some languages insist on being master
Others must follow the master’s conventions
• This is not always clear in documentation

• There must always be a single master
Even for the easy C + Fortran 77 case

Need for run--time initialisation/ termination
Platform mechanisms are now very rare
Sometimes exist when using just one vendor

Mixed Language Linking – p. 9/??

Microsoft (1)

Don’t use them myself, but here are plans
Amusingly, repeat of late 1980s IBM CEE ones

Used to be more--or--less assembler interfaces
With Visual Basic as primary language

Moving to CLI (≡ IBM CEE) in .NET
With C# as primary interface language
Plus Visual Basic, J#, C++/CLI and others
NONE of which match external standards

Mixed Language Linking – p. 10/??

Microsoft (2)

IBM CEE failed to take over the world
Partly for extraneous reasons (workstations)
But will Microsoft succeed this time?

Principles of what I say applies to both
Some details apply only to non--Microsoft
• Situation won’t settle down before 2010

• I can advise how to minimise problems
But not within scope of this course

Mixed Language Linking – p. 11/??

Example Masters

Anything with fancy memory management
• Two garbage collectors is BAD news
Exception handling, some I /O, etc. are similar

Python, Fortran 90, C++, Java, Perl, C#, Tcl/Tk,
MATLAB, Maple, Mathematica, Excel, . . .

In some cases, can be used for servant code
• Needs lots of experience and skill
• Always very implementation--dependent

Mixed Language Linking – p. 12/??

Servants

• Easier to list these, as only a few
May be a few other, rarer languages

C90, C99, Fortran 77, almost always
C++, Fortran 90 can be used with care
And, of course, suitable assemblers

Microsoft C# was described earlier
Most other systems use C for interfaces
• Regard most libraries as simple C code

Mixed Language Linking – p. 13/??

Code Generation (1)

Masters may have a generation option
The MATLAB Compiler is an example
http: / /www.mathworks.com/products/compiler /

Also Mathematica MathCode C++/F90
[On Microsoft systems only]

http: / /www.wolfram.com/products/...
... /applications/{mathcode,mathcodef90}

• Such code may need extensive editing

Mixed Language Linking – p. 14/??

Code Generation (2)

• May generate ‘core’ code only, no interfaces
Or interfaces for wrong target language
Need to add them manually and painfully

• Problem if may need to keep updated
It can be done, but needs a LOT of skill

Or converse problem, described under SWIG

Mixed Language Linking – p. 15/??

Combinations

Will describe most important combinations
And give indication of how to proceed

• If I don’t mention it, investigate first
May be an infeasible combination
Or I may simply not have thought of it

For infeasible combinations, look at:
MultiApplics/

Mixed Language Linking – p. 16/??

The Trivial Cases

C++ is almost a superset of C!

Fortran 2003 is a superset of Fortran 77

• Easiest to use ‘higher’ compiler for both

Can often mix code from different compilers
But see later about issues with that

Mixed Language Linking – p. 17/??

The Simple Combinations

Using a higher language (Python etc.)
Its implementation language as servant

• Nowadays, latter is almost always C
Rarely, may be C++ – see later
On Microsoft, may be Visual Basic or C#

Don’t underestimate the learning needed
• Errors in C etc. often cause CHAOS

Mixed Language Linking – p. 18/??

Fortran and C

Nowadays, Fortran is the higher language
Its library is almost always based on C

• Treat it as master, link using Fortran
Rarely will need to fiddle libraries etc.
Usually easiest to use Fortran main program
Not needed for simple Fortran 77 procedures

• Will come back to this at length later

Mixed Language Linking – p. 19/??

SWIG (1)

A semi--generic C/C++ interface builder
http: / /www.swig.org/

Not used it for real, but it looks sound
Also under active development by a team

The Web pages are rather full of hype
The manual is a LOT better – looks OK

Mixed Language Linking – p. 20/??

SWIG (2)

• Generated code is not maintainable
Generator is compiler – NOT intelligent
Not a highly optimising compiler, either

Lots of unnecessary code and actions
• You should maintain original source only
Use SWIG as black--box pre--processor

• Universal problem with generic converters
Exact converse of one mentioned above

Mixed Language Linking – p. 21/??

SWIG (3)

It lowers the effort, but that is all
Trivial uses are trivial, but . . .

• You will HAVE to customise interfaces
I didn’t seriously try out such aspects

More detail about the underlying problem later

Mixed Language Linking – p. 22/??

The Tradeoff

• Complete generator is much easier to use
• Much better if need to keep source updated
• Limited use for generating ‘proper’ code

• Core--only generator much more effort
• Much easier for generating ‘proper’ code
• Pain in the neck if source keeps changing

Manual conversion is like core--only generator

Mixed Language Linking – p. 23/??

Python and Java

May be a fully documented mechanism and API

All (!) you have to do is to obey its rules
http: / /docs.python.org/ext /
http: / / java.sun.com/j2se/1.4.2/docs/guide/ jni /

I am currently doing this with Python
No major problems for even advanced work
• MUST use its recommended conventions

Need discipline for practical debugging

Mixed Language Linking – p. 24/??

MATLAB

Web pages have information and examples
http: / /www.mathworks.com/access/helpdesk/...

... /help/ techdoc/matlab---external /

MATLAB can call C and Fortran
Can start and use MATLAB from those, too

Mixed Language Linking – p. 25/??

Mathematica

Mathematica MathLink allows calling C and C++
http: / /support.wolfram.com/mathematica/mathlink/
Mathematica J/Link allows linking to Java
http: / /www.wolfram.com/solutions/mathlink/

There is also some .NET integration
http: / /documents.wolfram.com/mathematica/...

... /Add--onsLinks/NETLink/

Mixed Language Linking – p. 26/??

Tcl/Tk and Perl

Tcl/Tk has a documented interface library
http: / /www.tcl.tk/man/tcl8.4/
A zillion (unmaintained?) Tcl /C++ interfaces
Would guess that using SWIG is better

Perl was a nightmare, even for hackers
There is now a book that maps the minefield
Extending and Embedding Perl,

Jenness & Cozens

Mixed Language Linking – p. 27/??

Others

Maple to C is not well documented

Oracle and similar are also possible

Mixed Language Linking – p. 28/??

Particular Issues

This is a miscellaneous set of tips
• NOT a complete checklist of problems

The restrictions are not usually ‘hard’
• Bypassing them may need advanced hacking

Please ask if you have problems

Mixed Language Linking – p. 29/??

Compiler Compatibility

Very much like Fortran and C issues
• Two C compilers need not be compatible
Anywhere I say usually is a risk, and more

• But there are problems beyond data passing

Don’t trust versions to be compatible
Not just compiler, but libraries, too
Intel has a particularly poor record

Mixed Language Linking – p. 30/??

Basic Interfaces

At bottom level, may use different registers
• Only assembler programmers can handle that
Assume basic calling sequence is compatible

• Check for documented compiler options
Make sure both are in 32-- or 64--bit mode!
Make sure IEEE 754 modes are compatible

Name munging (Fortran and C++) may vary
Very often options to control that

Mixed Language Linking – p. 31/??

Compilation and Linking

Compile all servant code without linking
• Link using master compiler or script

May need extra libraries or to hack script
Look at documentation first but, if not:

Usually option to display command expansion
–v, –#, –dryrun etc.
Run for servant and select libraries/options
Add carefully to master link command

Mixed Language Linking – p. 32/??

Termination etc.

• Start and terminate in master language
Can be done other way, but gets much trickier

Don’t rely on the servant language cleaning up
• Close all servant I /O streams before exit
Also free all space, if continuing in master

• Don’t longjmp across other languages
Same applies to C++ exceptions etc.

Mixed Language Linking – p. 33/??

Name Clashes

Avoid Fortran and C externals of same name
And that means even when case is ignored
• Including ALL names in EITHER library

For example, Fortran SQRT 6≡ C sqrt
• Name munging only sometimes protects you
Internals, statics etc. are not a problem

Can get name clashes within libraries
All solutions to that are advanced hacking

Mixed Language Linking – p. 34/??

I/O

Can usually write to standard output/error
• ALWAYS call flush after doing so
Fortran 2003 has a FLUSH subroutine
Almost all Fortran systems have one

Don’t do any other form of I /O mixing
Don’t reposition standard output/error
Can often be done, but is minefield

Mixed Language Linking – p. 35/??

C and Fortran

What many people assume by mixed--language
Will go into some details of simpler cases
Will NOT go into the arcane details

• Please ask if you have or hit problems

Mixed Language Linking – p. 36/??

Data Model

All bets off for fancy interfaces
Must read API specification or language guide
Or reverse engineer implementation’s interface

Basic interfaces are semi--portable
Used for most Fortran and C interfaces

Will start with describing interface design

Mixed Language Linking – p. 37/??

C and C++ Args and Results

Arguments are by value, like a sort of structure
• Alignment rules may be very different

Structures etc. usually passed inline
float usually promoted to double
char, short usually promoted to int

Results are also returned by value
Similar, even less defined, promotion rules
Structures returned in several different ways

Mixed Language Linking – p. 38/??

C and C++ Recommendation

Args and results use int, double and pointers
⇒ no complex results

Relevant only to C99 and C++, of course

Pointers to char, short, float,complex are fine
No problem with any type of array argument
Or returning pointer to anything

Mixed Language Linking – p. 39/??

Fortran Arguments and Results

Almost always passed as pointers
• May be pointer to cell containing a copy

CHARACTER lengths usually elsewhere
• Must used fixed, known--length strings
Occasionally may be extra argument

• Stick to INTEGER and D.P. results
CHARACTER and COMPLEX are problems

Mixed Language Linking – p. 40/??

Fortran External Names

Usually lower--cased and suffixed with ‘---’
Many other rules exist – use nm to detect
• Sometimes options, otherwise fix up in C

Fortran eternal procedures ≡ C extern functions

Fortran COMMON ≈ C extern struct
Do not assume padding rules are the same
• Avoid unaligned data like the plague

Mixed Language Linking – p. 41/??

Fortran COMMON and C

REAL(KIND=DP) :: A(5,10,3)
INTEGER :: N(20)
COMPLEX(KIND=DP) :: C(5,10)
COMMON /FRED/ A, C, N

extern struct {
double a[3][10][5]; ⇐ Note!
complex double c[10][5];
int n[20];

} fred---;

Mixed Language Linking – p. 42/??

Fortran Calls and C (1)

SUBROUTINE FRED (A, B, C)
REAL(KIND=DP) :: A
INTEGER :: B
COMPLEX(KIND=DP) :: C

extern void fred--- (double *a,

int *b, complex double *c);

Mixed Language Linking – p. 43/??

Fortran Calls and C (2)

INTEGER FUNCTION FRED (A, B, C)
DOUBLE PRECISION :: A(5,10,3)
CHARACTER(LEN=15) :: B(15)
INTEGER :: C(20)

extern int fred--- (

double a[3][10][5],
char b[15], int c[20]);

Mixed Language Linking – p. 44/??

C Datatypes

What most compilers do, not what is required
• The basic types everything is mapped onto

Anything not mentioned likely to be a trap
C99 introduced a LOT of pitfalls
• Most systems don’t use them by default

Mixed Language Linking – p. 45/??

Integer Types

Almost always, short is 16--bit, int is 32--bit
long is 32-- or 64--bit, depending on system
unsigned affects only arithmetic, not data

Only one representation – twos’ complement
• Endianness does not vary within a system

• Almost every integer mapped to one of those
May not be the same mapping for every compiler
• Ask if you want guidelines on what is likely

Mixed Language Linking – p. 46/??

Floating Types

float & double are 32-- & 64--bit IEEE 754

• Don’t use options selecting Intel format

Watch out for hard vs soft underflow
• MUST use consistently through program
Arithmetic/

Mixed Language Linking – p. 47/??

Pointers

• Pointers are address of first byte
No information on type or length

• Arrays are pointer to first element
Always contiguous (i.e. no gaps)
• LAST subscript varies fastest

Function pointers are just addresses, too

Mixed Language Linking – p. 48/??

C99 Arrays

C99 now comparable to Fortran 77
Argument array bounds can be variable
SUBROUTINE FRED (L, M, N, A)
INTEGER :: L, M, N
DOUBLE PRECISION :: A(N,M,L)

extern void fred--- (

int *l, *m, *n,

double a[*l][*m][*n]);

Mixed Language Linking – p. 49/??

Structures

Structures are in order, with natural alignment
Sometimes there are options to vary this
• Avoid unaligned data if at all possible

struct{int a; double d;} will be:

Bytes 0–3: a OR a

Bytes 4–7: unused d’
Bytes 8–11: d’ d’’
Bytes 12–15: d’’

Mixed Language Linking – p. 50/??

Other C Datatypes

char is generally 8--bit ASCII
• Strings are NUL--terminated arrays of char
As expected, are stored as pointers to char
Length is passed separately or scanned for

complex is structure: real, imaginary
Can usually be treated as array of length 2

union is whichever member is selected
Some systems have other types, but rarely

Mixed Language Linking – p. 51/??

C++ Classes

Simplest class is like struct
• Static members are omitted

• Not if virtual functions, virtual base classes
• Nor if it uses public or private

Class data, member functions passed implicitly
• Class of object known at compile time

Mixed Language Linking – p. 52/??

Fortran Datatypes

INTEGER ≈ C int
Sometimes an option to use 64 bits for it
REAL and D.P. ≡ C float and double
Both can be varied with KIND

In memory, COMPLEX ≈ C99/C++ complex
• Argument and result handling may differ
• Default (not recommended) is REAL

Mixed Language Linking – p. 53/??

Fortran CHARACTER

Generally 8--bit ASCII, like C
• An extra dimension of array, varying fastest
• NO termination, NUL or otherwise
Length is explicit in most declarations

• Length is implicit for arguments
See above for use in arguments
• Don’t return CHARACTER results

Mixed Language Linking – p. 54/??

Fortran Arrays

Fortran 77 arrays ≈ C arrays, transposed
I.e. explicit--shape and assumed--size arrays
DIMENSION A(5,10,3), B(20,*)

• FIRST subscript varies fastest

• Regard other sorts of array as fancy types
Allocatable, assumed--shape etc.
DIMENSION C(5:), D(:,:)
REAL, ALLOCATABLE :: E(20), F(:)

Mixed Language Linking – p. 55/??

Other Fortran Datatypes

Derived types are fancy – but see below

• Regard pointers as fancy types, too
May be fat pointers – not just addresses

Procedures are just addresses, like C

Fortran I /O units are NOT POSIX descriptors

Mixed Language Linking – p. 56/??

Fortran 2003

It specifies some limited interoperability
Not yet generally available, but coming

Simple derived types can match struct
No pointers, or allocatable objects
Several, more obscure, restrictions

In theory, need to declare as BIND
Definitely need to for external variables

Mixed Language Linking – p. 57/??

High-Precision Timestamp
/* Return high--precision timestamp. */

#include <stddef.h>
#include <sys/time.h>
double gettime--- (void) {

struct timeval timer;
if (gettimeofday(&timer,NULL))

return --1.0;

return timer.tv---sec+

1.0e--6*timer.tv---usec;

}

Mixed Language Linking – p. 58/??

Using the Timestamp
program main

real(kind=kind(0.0d0)), &
external :: gettime

write (*,’(f20.6)’) gettime()

end program main

Mixed Language Linking – p. 59/??

Environment Variable (1)
#include <string.h>
#include <stdlib.h>
int getenvir--- (int *len, char *text) {

char *ptr;

if ((ptr = memchr(text,’ ’,*len))

== NULL) return --2;

*ptr = ’\0’;
if ((ptr = getenv(text)) == NULL)

return --1;

Mixed Language Linking – p. 60/??

Environment Variable (2)
if (strlen(ptr) < *len) {

memset(text,’ ’,*len);

memcpy(text,ptr,strlen(ptr));
return 0;

} else {
memcpy(text,ptr,*len);

return 1;

}
}

Mixed Language Linking – p. 61/??

Using Environment Variable
program main

integer, external :: getenvir
integer :: n
character(len=15) :: c
read (*,’(a15)’) c

n = getenvir(15,c)
write (*,*) n, c

end program main

Mixed Language Linking – p. 62/??

Rule Number 1

• KISS – Keep It Simple and Stupid!

Simple use very often works, easily
Ask for advice if you have problems

Mixed Language Linking – p. 63/??

	Overview of Course
	Beyond the Course
	Rule Number 1
	Why Link Multiple Languages?
	Extend Language Features
	Joining Applications Together
	Language Combinations
	Masters and Servants
	Microsoft (1)
	Microsoft (2)
	Example Masters
	Servants
	Code Generation (1)
	Code Generation (2)
	Combinations
	The Trivial Cases
	The Simple Combinations
	Fortran and C
	SWIG (1)
	SWIG (2)
	SWIG (3)
	The Tradeoff
	Python and Java
	MATLAB
	Mathematica
	Tcl/Tk and Perl
	Others
	Particular Issues
	Compiler Compatibility
	Basic Interfaces
	Compilation and Linking
	Termination etc.
	Name Clashes
	I/O
	C and Fortran
	Data Model
	C and C++ Args and Results
	C and C++ Recommendation
	Fortran Arguments and Results
	Fortran External Names
	Fortran COMMON and C
	Fortran Calls and C (1)
	Fortran Calls and C (2)
	C Datatypes
	Integer Types
	Floating Types
	Pointers
	C99 Arrays
	Structures
	Other C Datatypes
	C++ Classes
	Fortran Datatypes
	Fortran CHARACTER
	Fortran Arrays
	Other Fortran Datatypes
	Fortran 2003
	High-Precision Timestamp
	Using the Timestamp
	Environment Variable (1)
	Environment Variable (2)
	Using Environment Variable
	Rule Number 1

