
Converting Old To Modern Fortran

Nick Maclaren

nmm1@cam.ac.uk

July 2009

Converting Old To Modern Fortran – p. 1/??

Introduction

See ‘‘Introduction to Fortran Conversion’’

This does NOT teach the new features
See ‘‘Introduction to Modern Fortran’’
Even then, most details are only in books

This describes only what can be done
Starting from a correct Fortran 90 program
Real junk in ‘‘Fortran Archaeology’’

Converting Old To Modern Fortran – p. 2/??

What Have We Here?

• Things to take advantage of modern features
Mostly for ‘‘software engineering’’
Clarity, maintainability, error checking etc.

No old code will break in forseeable future
Old code may not mean what you expect
So cleaning up those aspects is good

• Remember to balance gain against pain
We shall cover a LOT of points
Just note the things that you want to change

Converting Old To Modern Fortran – p. 3/??

Reminder: Tools

f2f90 will do a few of them
And others are easy using Python or Perl

• Avoid doing manual edits if you can

Contact me if you have a conversion problem

Converting Old To Modern Fortran – p. 4/??

PARAMETER (1)

INTEGER fortytwo
DATA fortytwo /42/

• If read--only, this can be replaced by:

INTEGER, PARAMETER :: fortytwo = 42

Now can’t write to it by accident
Makes it easier for compiler to optimise
PARAMETER arrays may be more efficient

Converting Old To Modern Fortran – p. 5/??

PARAMETER (2)

PARAMETER defines a true constant
Can be used anywhere a constant can be
KIND=, CASE, initialisation, array bounds
No performance degradation in sane compilers

• Enables a lot of cleaning up
Reduces problems with finger trouble
And pre--editing hacks in build scripts

Converting Old To Modern Fortran – p. 6/??

Recursion

Fortran 90 allows it – like DEC and Egtran
You must declare procedures RECURSIVE

Can clean up some old, horrible hacks
E.g. unnecessarily duplicated procedures
• Otherwise don’t bother about it

• Check if necessary libraries use/allow it

Converting Old To Modern Fortran – p. 7/??

Procedure/Data Interfaces

Not just INTERFACE, but interfaces generally
Lots of improvements in Fortran 90
Much better error checking and ease of use
• Probably most important improved area

Accounted for half of bugs in Fortran 77
Similar experience with many C codes
• Fortran 90 can catch most such errors

Converting Old To Modern Fortran – p. 8/??

Modules Are The Key

• Everything depends on modules
Used to encapsulate declarations

• Design your modules carefully
As the ultimate top--level structure
Perhaps only a few, perhaps dozens
Dependency graph shows visibility /usage

• Good place for high--level comments
Please document purpose and interfaces

Converting Old To Modern Fortran – p. 9/??

What is a Module

Bundles definitions/ interfaces into a unit
• Similar to same term in other languages

Includes its static data definitions
And exported procedure interfaces
Actual code not part of module interface

Files may contain several modules
Modules may be split across many files
• But, in simplest use, keep them 1≡1

Converting Old To Modern Fortran – p. 10/??

Module Structure

MODULE name
Static (often exported) data definitions
CONTAINS
Procedure definitions and interfaces
END MODULE name

Code may be included, or may be external

Converting Old To Modern Fortran – p. 11/??

PUBLIC/PRIVATE

Can separate exported from hidden definitions

Fairly easy to use in simple cases
• Worth considering when designing modules

No more details here, as largely new facility
In simplest uses, just does what you expect

Converting Old To Modern Fortran – p. 12/??

Replace COMMON

Data modules are cleaner form of COMMON
BLOCK DATA becomes initialisation

Then just USE the module – much clearer
• A trivial change in clean code
The simplest use of modules possible

May extend module by moving code in there
E.g. auxiliary routines for that data

Converting Old To Modern Fortran – p. 13/??

COMMON Example

INTEGER :: count, array(1000)
COMMON /awful / count, array

Make a file (say awful.f90) containing:

MODULE awful
INTEGER :: count, array(1000)
END MODULE awful

USE awful

Converting Old To Modern Fortran – p. 14/??

COMMON And SAVE

• Named COMMON did not imply SAVE
But many programs assumed it
And compilers usually implemented it

May need to add SAVE attributes

• Worth thinking whether you do
E.g. scratch space does not need it
There can be an efficiency cost

Converting Old To Modern Fortran – p. 15/??

Explicit Interfaces (1)

Full declaration of procedure types
Not just result, but arguments, properties etc.
Like Algol 68, Pascal, ISO C, but more so

• All calls have all properties known
Give much better error checking
Allow use of many other new features

Converting Old To Modern Fortran – p. 16/??

Interface Example

SUBROUTINE fred (array, opt, err)
USE double
REAL(KIND=FP) :: array(:)
REAL, INTENT(IN) :: opt
INTEGER, INTENT(OUT) :: err

Converting Old To Modern Fortran – p. 17/??

Explicit Interfaces (2)

Automatic if procedures in modules
Or if calling internal procedures
I.e. any procedures following CONTAINS

These are only fully secure methods
• Also simplest – start with these

Can have separate interface modules
Or include interface declarations
• No examples given of this sort of use

Converting Old To Modern Fortran – p. 18/??

Internal Procedures

PROGRAM name
Static (often exported) data definitions
CONTAINS
Procedure definitions and interfaces
END PROGRAM name

Also in SUBROUTINE and FUNCTION
But not in internal procedures themselves!

Converting Old To Modern Fortran – p. 19/??

Separate Interfaces

May need to generate interfaces
Needed for multi--module mutual recursion
And when defining interfaces for non--Fortran
Including Fortran 77 libraries as binary

Actual code in separate file (as Fortran 77)
• It is NOT checked against interface

• Do it by f2f90 (or NAGWare), not by hand
Except for binary libraries and non--Fortran!

Converting Old To Modern Fortran – p. 20/??

Keyword/Optional Arguments

Can simplify and clarify long lists
Often merge many procedures into one

• Don’t rush into this one, though
Spend time on designing such interfaces
Choosing the right defaults can be tricky
• KISS – Keep It Simple and Stupid

• Be careful when merging procedures
Don’t forget to cross--check interactions

Converting Old To Modern Fortran – p. 21/??

Keyword Example

SUBROUTINE fred (this, that, the, other)
REAL :: this, that, the, other

. . .
CALL fred(that=3,this=2,other=1,the=4)

Don’t have to remember the order of long lists
CALL fred(2,3,4,1)

Converting Old To Modern Fortran – p. 22/??

Simple Use Of OPTIONAL

• Use OPTIONAL for setting defaults only
On entry, check and copy ALL args
Use ONLY local copies thereafter
Now, all variables well defined when used

• Can do the converse for optional results
Just before returning, check and copy back

• Beyond this should be done only by experts

Converting Old To Modern Fortran – p. 23/??

OPTIONAL Example (1)

FUNCTION fred (alf, bert)
REAL :: fred, alf, mybert
REAL, OPTIONAL, INTENT(IN) :: bert
IF (PRESENT(bert)) THEN

mybert = bert
ELSE

mybert = 0.0
ENDIF

Now use mybert in rest of procedure

Converting Old To Modern Fortran – p. 24/??

OPTIONAL Example (2)

SUBROUTINE fred (alf, bert)
REAL :: alf
REAL, OPTIONAL, INTENT(OUT) :: bert
...
IF (PRESENT(bert)) bert = ...
END SUBROUTINE fred

Converting Old To Modern Fortran – p. 25/??

FUNCTION Definitions

<type> FUNCTION fred (...)

• Fortran is giving up on this form
Too many new facilities to bolt on

FUNCTION fred (...)
<type>, <attributes> :: fred

Converting Old To Modern Fortran – p. 26/??

Precisions etc.

• Currently, need to use double precision
But will start to need 64--bit integers
Already needed for most serious SMP codes
Then WON’T want it, by default
Been the case on Cray systems for some time

This is what I recommend
Will future--proof your code
Also describe currently adequate solution

Converting Old To Modern Fortran – p. 27/??

Define Module

Best solution:

MODULE precision
INTEGER, PARAMETER :: FP = &
SELECTED---REAL---KIND(14,200)

END MODULE precision

Currently OK (except on Cray):
MODULE precision

INTEGER, PARAMETER :: FP = KIND(0.0D0)
END MODULE precision

Converting Old To Modern Fortran – p. 28/??

IMPLICIT NONE etc.

• Add to every module, procedure, interface:

USE precision
IMPLICIT NONE

Forces declaration of almost everything
• Picks up a LOT of stupid mistakes

Following is allowed but NOT recommended:

IMPLICIT <type> (<letter>--<letter>)

Converting Old To Modern Fortran – p. 29/??

Using Precisions

REAL(KIND=FP) :: <declarations>
REAL(FP) :: <declarations>
COMPLEX(KIND=FP) :: <declarations>

• Add ‘---FP’ to all floating constants

Don’t leave hostages to fortune . . .

• Do this using NAGWare or your own tool
Very error--prone when done manually

Converting Old To Modern Fortran – p. 30/??

Warning: Constants

REAL(), PARAMETER :: pi = <what?>

None of the following work:

. . . = 4.0D0*ATAN(1.0D0)

. . . = 3.14159265358979323846

. . . = M---PI [On Linux using cpp]

The following does:

. . . = 3.14159265358979323846---FP

Converting Old To Modern Fortran – p. 31/??

Make Functions Generic

Most intrinsic functions are now generic
Can change precision and even type easily
BUT you can’t pass them as actual arguments

• Change old, specific names to generic
See section 13.6 of Fortran 2003 standard
Clean up any uses of INTRINSIC or EXTERNAL

• Write wrappers if passed as arguments (rare)

Converting Old To Modern Fortran – p. 32/??

Type Conversion

Most painful part of generic intrinsics
• CMPLX is a major trap for the unwary
MUST specify KIND parameter when using
Assuming use of non--default REAL (as above)

REAL, DBLE ⇒ REAL(...,KIND=FP)
CMPLX ⇒ CMPLX(...,KIND=FP)

• INT is usually safe enough
Default is conventionally OK for array indexing

Converting Old To Modern Fortran – p. 33/??

Current Shortcuts

If (and ONLY if) using FP = KIND(0.0D0):

Can use ‘D’ as exponent letter
. . . pi = 3.14159265358979323846D0

REAL ⇒ DBLE

Not future--proof, but OK for a few years
. . . except on Cray . . .

Converting Old To Modern Fortran – p. 34/??

Argument Passing

Major gotchas in Fortran in this area
It predates usual value/pointer model
It associates actual and dummy arguments
Expressions are stored in a hidden temporary

E.g. a COMMON variable as an argument
And then updated in COMMON during call
Effect is undefined – anything may happen

Converting Old To Modern Fortran – p. 35/??

Other Association

• Also applies if imported or in COMMON
Any two ‘‘names’’ for one location

Import /export is very like argument passing
• Be very careful exporting imports
• Don’t play games with renaming in USE
Watch out for EQUIVALENCE – see later

Converting Old To Modern Fortran – p. 36/??

Read-Only Dummy Arguments

• In Fortran 90, use INTENT(IN)
Unfortunately, only protects against writing

• In Fortran 2003, consider VALUE
Will take a copy of argument if needed
Generally, not a good idea for arrays

Some existing codes will take a copy on entry
An old, adequate (but not fully safe) defence
Usually protects against it changing

Converting Old To Modern Fortran – p. 37/??

Dummy Argument Example

SUBROUTINE fred (a, b)
REAL :: a
REAL, INTENT(IN), VALUE :: b
a = a * b + b

Following now becomes legal – hurrah!

REAL :: x = 1.23
CALL fred (x, x)

Converting Old To Modern Fortran – p. 38/??

Passing Objects Twice (1)

• Always safe if all uses are read--only
See above for how to declare that

Disjoint array sections are distinct variables
Array elements are distinct if different

Using array sections is clean, but check for copy
CALL FRED(WORK(1:N),WORK(N+1:2*N))

Older method unclean but OK, IF within bounds
CALL FRED(WORK,WORK(N+1))

Converting Old To Modern Fortran – p. 39/??

Passing Objects Twice (2)

Beyond that, here be dragons . . .
Similar to storage association (see later)
• Avoid this if at all possible

If ANY use MIGHT update it
and there is a non--VALUE argument

• Make sure array sections are disjoint
• Force scalars to be copied (Fortran 77/90/95)

Converting Old To Modern Fortran – p. 40/??

Forcing A Copy

REAL :: x = 1.23

CALL fred (x, real(x,kind=kind(x)))

CALL fred (x, x+0.0)

y = x
CALL fred (x, y)

Converting Old To Modern Fortran – p. 41/??

An Old Construction

INTEGER WORK(N)
CALL FRED(...,WORK,WORK,WORK)

SUBROUTINE FRED (...,WI,WR,WC)
INTEGER WI(*)

REAL WR(*)

COMPLEX WC(*)

Used for storage management in Fortran 77
• Use local workspace arrays, ALLOCATE etc.

Converting Old To Modern Fortran – p. 42/??

Whole Array Operations

• Almost always much clearer and shorter
Simpler code makes tuning much easier
Efficient implementation isn’t always easy

Should be more efficient than DO--loops
Sometimes the converse, so check if necessary

• Don’t force the compiler to take copies
Watch out for unnecessary copying, too
Unfortunately, look for memory leaks, too

Converting Old To Modern Fortran – p. 43/??

Tuning Array Operations

KISS – Keep It Simple and Stupid

Greatest gain is to move up one level
• Replace sections by BLAS or LAPACK
Especially MATMUL ⇒ xGEMM and up

Experts can do more with DO--loops
More control of space, ordering etc.
• Don’t rewrite well--tuned DO--loops

Converting Old To Modern Fortran – p. 44/??

Array Examples

REAL :: A(:,:), B(:,:), C(:,:)

No compiler should copy anything
A = B*C/SUM(A)

A = MATMUL(B,C)

A = A+MATMUL(B,C) ! It needn’t, but . . .

A = MATMUL(A,B) ! Almost certainly a copy

Converting Old To Modern Fortran – p. 45/??

Assumed-Shape Arrays

Can replace explicit shape or assumed size args
Except where bounds are absolute!
• Much more flexible, may be more efficient

• Replace passing array elements by sectioning

• Avoid conversion TO explicit /assumed size
Usually forces copying of the section
Watch out for compilers copying unnecessarily

Converting Old To Modern Fortran – p. 46/??

Assumed-Shape Implementation

• Older methods need pass only pointer
Almost required to be address of first element
Bounds are fixed, passed explicitly, or similar
Essentially same as C, whether C90 or C99

Assumed--shape passes descriptor, like Algol 68
Bounds passed implicitly, can be checked
• May not be contiguous, if section taken

Converting Old To Modern Fortran – p. 47/??

Assumed-Shape Example

SUBROUTINE fred (a, b, c)
DO j = LBOUND(a,2), UBOUND(a,1)

DO i = LBOUND(a,1), UBOUND(a,1)
a(i,j) = DOT---PRODUCT(b(i,:),c(:,j))

ENDDO
ENDDO

Reduces finger trouble when passing bounds

Converting Old To Modern Fortran – p. 48/??

Workspace (Automatic) Arrays

Size of local arrays set at run--time
REAL :: array(<expression>)

• Can remove great deal of messy code
Including lots of workspace arguments

Space should be recovered on return
Often mixes badly with ALLOCATE,

array--valued functions, and similar
Details far beyond scope of this course

Converting Old To Modern Fortran – p. 49/??

Array Masking

Operations on selected elements of array
Fortran 90 has WHERE assignment statement
• Much simpler than conditionals in loop

On most systems, little gain in efficiency
Real advantage is improvement in clarity

Watch out for unnecessary copying, again

Converting Old To Modern Fortran – p. 50/??

Simple Masking

INTEGER :: k(1000)
REAL :: a(1000)

DO i = 1,1000
IF (k(i) > 0) a(i) = SQRT(a(i))

ENDDO

Becomes:

WHERE (k > 0) a = SQRT(a)

Converting Old To Modern Fortran – p. 51/??

More Complex Masking

INTEGER :: k(1000)
REAL :: a(1000)

WHERE (k <= 0)
A = --1.0

ELSEWHERE (a < 0.0)
a = 0.0

ELSEWHERE
a = SQRT(a)

ENDWHERE

Converting Old To Modern Fortran – p. 52/??

FORALL Statement

This is essentially multi--array masking
Fortran 95/2003 included it, from HPF

Reliable source says slower than DO--loops
Sometimes by orders of magnitude

• So advice is don’t use it in new code
But don’t bother to remove it from old code
Unless analysis shows it is a bottleneck

Converting Old To Modern Fortran – p. 53/??

Array-Valued Functions

You can write your own array--valued functions
Just as for scalars in Fortran 77
Some subroutines cleaner as functions

• Very commonly causes memory leaks
This is a major implementation headache
Details far beyond scope of this course

And unnecessary copying yet again . . .

Converting Old To Modern Fortran – p. 54/??

Remove Labels (1)

Dijkstra was right but misquoted, as usual
Sometimes GOTOs can clarify control flow
• < 1% of those needed in Fortran 66

Can use for branch to error control block
But consider using internal procedures
See later about I /O exception handling

• Tools can handle only the simplest cases
Manual conversion easy but error--prone

Converting Old To Modern Fortran – p. 55/??

Remove Labels (2)

IF (...) GOTO 100
...

GOTO 200
100 ...
200 CONTINUE

IF (...) THEN
...

ELSE
...

ENDIF

Converting Old To Modern Fortran – p. 56/??

Remove Labels (3)

DO . . . ENDDO, EXIT, CYCLE, WHILE
• Note that DO loops can now be labelled

outer: DO
inner: DO
IF (...) CYCLE outer
ENDDO inner

ENDDO outer

Converting Old To Modern Fortran – p. 57/??

Remove Labels (4)

SELECT, CASE and DEFAULT
Executes one block out of the selection
• Much the rarest control construct
Following is more flexible:

IF (...) THEN
ELSEIF (...) THEN
ELSEIF (...) THEN
ELSE
ENDIF

Converting Old To Modern Fortran – p. 58/??

Remove Labels (5)

Use for FORMATs is cleaner, but unnecessary
Allowing both " ’ " and ’ " ’ is a great help!
• Can replace by character string

WRITE (*,"(’Error ’,I0,’ on ’,I0)") IOSTAT, N

CHARACTER(*), PARAMETER :: f1 = ’(...)’
WRITE (*,f1) IOSTAT, N

• Or by calling an internal procedure

Converting Old To Modern Fortran – p. 59/??

I/O

This is a traditional weak point
Fortran 90 included significant upgrades
Fortran 2003 has many minor improvements

Still many unnecessary restrictions
• And most compilers are not Fortran 2003

• Most common problem is free--format input
Localise any problem I /O and possibly call C

Converting Old To Modern Fortran – p. 60/??

I/O Errors

• ERR and END ⇒ IOSTAT or IOMSG
Potentially provides more information anyway
IOMSG is best, but only in Fortran 2003

I /O error handling is generally no better
• Format errors on reading still undefined
But all compilers seem to set IOSTAT

• Generally not worth cleaning this up
Except to remove use of labels

Converting Old To Modern Fortran – p. 61/??

OPEN and INQUIRE

Lots of minor improvements, few important
• Opening file twice for input still illegal

ACTION=’READ’ or ’WRITE’ or ’READWRITE’
• Definitely use this, in all OPENs
Can be critical in some circumstances

Can set defaults for most formatting modes

Converting Old To Modern Fortran – p. 62/??

Non-Advancing I/O (1)

Doesn’t move to new record if more data
Don’t confuse it with C’s streaming model
Unfortunately has huge number of constraints

Not list--directed, not on internal files . . .
Little use for free--format input or output

Can use to build out output records in parts
Useful for prompting, but has problems

Converting Old To Modern Fortran – p. 63/??

Non-Advancing I/O (2)

Can use to read unknown length records
But only as far as raw characters

CHARACTER(LEN=1) :: buffer(100)
READ(ADVANCE=’NO’,EOR=last,SIZE=len)

Rest of record (if any) is read next time
Unpick the buffer as an internal file

• Generally, using PAD is easier – see later

Converting Old To Modern Fortran – p. 64/??

Free-Format Input

Still only list--directed I /O
• Can now use with internal files!
Still no way to tell how many items read
And non--advancing I /O is not allowed

Can use to unpick buffers created as above
Continue to set all values before reading

• Not worth a conversion campaign

Converting Old To Modern Fortran – p. 65/??

Asynchronous I/O

New in Fortran 2003, and fairly clean
• But not widely available, and won’t be

Contact me for sordid details
POSIX makes a complete mess of this
Microsoft doesn’t do much better

• Right semantics for MPI non--blocking
Hope for a decent MPI--3 binding to Fortran 90

Converting Old To Modern Fortran – p. 66/??

Other I/O Enhancements

PAD= allows reading space--trimmed records
DELIM= for strings in list--directed I /O
SIGN= for whether you want ‘+’ or not

Fortran 2003 output allows ’I0,F0.3’ etc.
Plus lots of slightly useful descriptors
• Free--format output is now more--or--less OK

Fortran 2003 FLUSH statement – about time!

Converting Old To Modern Fortran – p. 67/??

ANSI Control Characters

First column of SOME formatted output units
Absolutely no way of telling which ones

‘ ’ = next line, ‘0’ = skip line, ‘1’ = new page

‘+’ = overprint, sometimes also ‘2’--‘7’
[Latter were unreliable, like C ‘ \ r’, ‘ \ f, ‘ \v’]

• Dropped in Fortran 2003 – no replacement
Convert any code that uses old convention
Probably no compilers still rely on it

Converting Old To Modern Fortran – p. 68/??

Pure Procedures

No side--effects – usable in parallel
Like computer science ‘‘strictly functional’’

They don’t write to global data or use SAVE
All function arguments are INTENT(IN)
No external I /O or STOP statements
Some other constraints on pointers

• If you can, write functions like this
Can declare as PURE or ELEMENTAL
• Not always feasible and hinders debugging

Converting Old To Modern Fortran – p. 69/??

Features To Avoid

Not officially deprecated
Mostly because of political objections
Many have a few justifiable uses
Most have been undesirable for decades

• Remove them if you possibly can
• Localise and document them if you can’t
Ask for advice if you have difficulty

Converting Old To Modern Fortran – p. 70/??

Implicit Main Program

The PROGRAM statement is optional
You are recommended to add/use it
Only to make your life easier

Especially if comments outside procedures
Makes processing easier for simple tools
E.g. checking for only one main program!

Converting Old To Modern Fortran – p. 71/??

INCLUDE

INCLUDE ’<name>’ – usually a filename
It replaces the line by the text
May be INCLUDE (<name>) in Fortran IV

• Generally, replace by a module
Rare cases where that doesn’t make sense

Fortran 95 has optional preprocessor ‘‘Coco’’
Open source implementation, but few vendors

Converting Old To Modern Fortran – p. 72/??

Use of C Preprocessor

Very common, but a snare and a delusion
• C’s rules VERY different from Fortran’s
Often if fred.F or joe.F90, vs fred.f or joe.f90

#include ’<filename>’
#define <name> <expression>
#if (<expression>)

• Consider whether you can get rid of this

Converting Old To Modern Fortran – p. 73/??

Impure Functions (1)

Have always been undefined behaviour
But in a particular way before Fortran 90
Basically write--once / read--many rule
• No guarantee that any function call is made

Situation is unclear in Fortran 90/95/2003
Some people say totally undefined (illegal)
Others say same as ANSI Fortran 77
Avoid this extremely nasty mess if you can

Converting Old To Modern Fortran – p. 74/??

Impure Functions (3)

Safest use is for random numbers and similar
Some local state is saved between calls
• Updating global state for experts only
• Reading updatable global state is as bad

Use separate module and file; avoid inlining
• Never export the local state as data
• Don’t use twice in same statement
Includes use within another function call

Converting Old To Modern Fortran – p. 75/??

Impure Functions (4)

COMPLEX FUNCTION FRED (ARG)
COMPLEX, SAVE :: COPY
COPY = ARG
FRED = ...

COMPLEX FUNCTION JOE (ARG)
JOE = CONJG(FRED(ARG))

X = FRED(1.23)+JOE(4.56)
• Is NOT allowed and may well not work

Converting Old To Modern Fortran – p. 76/??

Impure Functions (4)

Lots of other, fairly safe uses
Constraints same as for random numbers

Cache of common arguments and results
Can keep trace buffer or update use count
Can do I /O if careful (e.g. diagnostics)

• Twice in same statement needs thread safety
Possible safely, but neither easily nor portably

Converting Old To Modern Fortran – p. 77/??

EQUIVALENCE (1)

Used to overlap arrays to save space
But, strangely, not on dummy arguments
Non--trivial uses create horrible errors
And can interfere with optimisation

Modern computers have lots of memory
Consider ALLOCATABLE or POINTER
• Overlap arrays only when essential
• Use it very simply and very cleanly

Converting Old To Modern Fortran – p. 78/??

EQUIVALENCE (2)

Used to play bit twiddling tricks
E.g. to unpick floating--point formats
Undefined behaviour, and means it, too
• Common cause of portability problems

• Localise any such tricks in small modules
Can sometimes replace by new functions
Can compile them with no optimisation
Or replace them by C or assembler

Converting Old To Modern Fortran – p. 79/??

Reshaping via Arguments

DOUBLE PRECISION X(10,20)
CALL FRED(A(5,5))

SUBROUTINE FRED (A)
DOUBLE PRECISION A(25)

Legal but ill--defined in Fortran 66
Dubiously illegal in Fortran 77
Well--defined in Fortran 90 and beyond
• But should be avoided, anyway

Converting Old To Modern Fortran – p. 80/??

Other Storage Association

Can also be done via COMMON – see earlier

All methods can be used cleanly or revoltingly
Equating different base types is worst form
Get rid of that use, if at all possible

• Legal or safe use is fiendishly tricky
Rules have changed over the years, too
Interferes badly with optimisation

Converting Old To Modern Fortran – p. 81/??

Examples Of Bad Cases

REAL X(20)
INTEGER N(20)
EQUIVALENCE (X, N))

INTEGER N(4,10)
CALL FRED (N)
...
SUBROUTINE FRED (A)
DOUBLE PRECISION A(20)

Converting Old To Modern Fortran – p. 82/??

Routine Structure

Before 1980s, calls were SLOW
Almost no compiler inlined calls

• Consider splitting up complex routines
Repeated code can become internal procedure

Several features to avoid routine calls
Most are strongly deprecated or deleted
Main remaining one is ENTRY

Converting Old To Modern Fortran – p. 83/??

ENTRY (1)

FUNCTION FRED (A, B)
...
ENTRY JOE (N)
...
One procedure with several interfaces
Yes, it’s utterly horrible
VERY hard to use correctly

• Replace by separate, simple wrappers
Different interfaces to a common auxiliary

Converting Old To Modern Fortran – p. 84/??

ENTRY (2)

FUNCTION FRED (A, B)
CALL BERT (1, X, A, B, M, N)
FRED = X

FUNCTION JOE (N)
CALL BERT (2, X, A, B, M, N)
JOE = M

Much easier to understand and debug

Converting Old To Modern Fortran – p. 85/??

ENTRY (3)

You could do that using OPTIONAL args
Definitely advanced use for experts only

• If you have to ask how, please don’t try
Even if you do, think twice before doing so

• The difficulty is intrinsic to the problem
It is NOT caused by ENTRY syntax

Converting Old To Modern Fortran – p. 86/??

BACKSPACE, ENDFILE etc.

Correspond to long--dead filesystem models
Fruitful source of traps on modern systems

• Replace BACKSPACE by internal files
• Replace ENDFILE by CLOSE or REWIND
Or by redesigning I /O interface

• Don’t use formatted, direct--access files
Similar problems to ones for C -- lots!

Converting Old To Modern Fortran – p. 87/??

Fortran 66/77 Relics

Obsolescent in Fortran 95/2003
You will definitely see many of these
They will still work but should not be used

Most can be covered fairly briefly
Almost all sane code is easy to modernise
But may be very tedious by hand
Use an automatic tool where possible

Converting Old To Modern Fortran – p. 88/??

Fixed Form Source (1)

Comments have ‘C’ in column 1
Labels in columns 1–5
Statement in columns 7–72 only
Columns 73–* ignored (for sequence numbers)

If column 6 not a space or ’0’:
join columns 7–72 onto previous line

Spaces ignored and not needed (ex. Hollerith)

G OTO12
0 1 2 CALLMY SUB(9 8)

DO 10 I = 1.10

Converting Old To Modern Fortran – p. 89/??

Fixed Form Source (2)

You don’t need to write such perverse code
But details are complicated for newcomers
Truncation at column 72 is a major trap
And not all compilers did it . . .

Main surviving relic of punched cards

• Convert using f2f90 (or NAGWare)
Or write your own Python/Perl converter
• By hand is very tedious and error--prone

Converting Old To Modern Fortran – p. 90/??

Arithmetic IF

IF (<expression>) <label>,<label>,<label>
Branches to labels if negative, zero or positive
• Useful, clean, but ‘unstructured’

<temporary> = <expression>
IF (<temporary> .LT. 0) THEN
ELSEIF (<temporary> .EQ. 0) THEN
ELSE
ENDIF

Most compilers optimise use of <temporary>

Converting Old To Modern Fortran – p. 91/??

DO Loop Issues

DO 10 K = 1,10
DO 10 J = 1,10
10 CONTINUE

DO 10 K = 1,10
10 WRITE (*,*) K

• Convert to DO . . . ENDDO form

Converting Old To Modern Fortran – p. 92/??

Alternate Return

CALL FRED (A, *<label>, *<label>)

or (in Fortran IV and derivatives):
CALL FRED (A, &<label>, &<label>)
RETURN <N> branches to the Nth label

• Simplest to add an integer code as last argyment
And use it in a CASE statement after the call

Converting Old To Modern Fortran – p. 93/??

Computed GOTO

GOTO (<label>, ...) <integer variable>
Just a GOTO form of the CASE statement

• Replace by the CASE statement

To connoisseurs of the arcane and bizarre:

Look up second--level definition in Fortran 66

Converting Old To Modern Fortran – p. 94/??

Statement Functions

FRED (ARG) = 5.0*ARG+2.0

IF in right place,and FRED not function/array
• Infernally hard to recognise in code
Rather like a C #define in some ways

• Replace by an internal procedure
Cleaner and much more flexible

See also Fortran 2003 ASSOCIATE

Converting Old To Modern Fortran – p. 95/??

DATA Statement Ordering

Could occur almost anywhere (like FORMAT)

Simple: just move them into declarations
Better: replace by PARAMETER or initialisers

Incidentally, tidying up FORMAT is good
Put after READ/WRITE or at end
Best to replace, as described earlier

Converting Old To Modern Fortran – p. 96/??

Assumed Length Character
Functions

FUNCTION FRED (ARG)
CHARACTER (LEN=*) :: FRED

SC22/WG5 finally sees the light . . .
Length taken from context – don’t ask

• Redesign any such function, totally
Most character lengths should be constants
Or result length copied from an argument

Converting Old To Modern Fortran – p. 97/??

A Generic Character Function

FUNCTION FRED (ARG)
CHARACTER (LEN=*) :: ARG

CHARACTER (LEN=LEN(ARG)) :: FRED
FRED = ARG
END

Beyond that, little hope of optimisation
Also can run risk of memory leaks

Converting Old To Modern Fortran – p. 98/??

CHARACTER*<length>
Declarations

CHARACTER*80 CARDS(1000)

CHARACTER*80 FUNCTION CARD (ARG)

and (in Fortran IV and derivatives):
CHARACTER FUNCTION CARD*80 (ARG)

• Use LEN= type parameter instead

I recommend avoiding even:

CHARACTER :: A*10, B*20

Converting Old To Modern Fortran – p. 99/??

	Introduction
	What Have We Here?
	Reminder: Tools
	PARAMETER (1)
	PARAMETER (2)
	Recursion
	Procedure/Data Interfaces
	Modules Are The Key
	What is a Module
	Module Structure
	PUBLIC/PRIVATE
	Replace COMMON
	COMMON Example
	COMMON And SAVE
	Explicit Interfaces (1)
	Interface Example
	Explicit Interfaces (2)
	Internal Procedures
	Separate Interfaces
	Keyword/Optional Arguments
	Keyword Example
	Simple Use Of OPTIONAL
	OPTIONAL Example (1)
	OPTIONAL Example (2)
	FUNCTION Definitions
	Precisions etc.
	Define Module
	IMPLICIT NONE etc.
	Using Precisions
	Warning: Constants
	Make Functions Generic
	Type Conversion
	Current Shortcuts
	Argument Passing
	Other Association
	Read-Only Dummy Arguments
	Dummy Argument Example
	Passing Objects Twice (1)
	Passing Objects Twice (2)
	Forcing A Copy
	An Old Construction
	Whole Array Operations
	Tuning Array Operations
	Array Examples
	Assumed-Shape Arrays
	Assumed-Shape Implementation
	Assumed-Shape Example
	Workspace (Automatic)
Arrays
	Array Masking
	Simple Masking
	More Complex Masking
	FORALL Statement
	Array-Valued Functions
	Remove Labels (1)
	Remove Labels (2)
	Remove Labels (3)
	Remove Labels (4)
	Remove Labels (5)
	I/O
	I/O Errors
	OPEN and INQUIRE
	Non-Advancing I/O (1)
	Non-Advancing I/O (2)
	Free-Format Input
	Asynchronous I/O
	Other I/O Enhancements
	ANSI Control Characters
	Pure Procedures
	Features To Avoid
	Implicit Main Program
	INCLUDE
	Use of C Preprocessor
	Impure Functions (1)
	Impure Functions (3)
	Impure Functions (4)
	Impure Functions (4)
	EQUIVALENCE (1)
	EQUIVALENCE (2)
	Reshaping via Arguments
	Other Storage Association
	Examples Of Bad Cases
	Routine Structure
	ENTRY (1)
	ENTRY (2)
	ENTRY (3)
	BACKSPACE, ENDFILE etc.
	Fortran 66/77 Relics
	Fixed Form Source (1)
	Fixed Form Source (2)
	Arithmetic IF
	DO Loop Issues
	Alternate Return
	Computed GOTO
	Statement Functions
	DATA Statement Ordering
	Assumed Length Character Functions
	A Generic Character Function
	CHARACTER*<length> Declarations

