
Introduction to OpenMP

Background and Principles

N.M. Maclaren

nmm1@cam.ac.uk

September 2019

1.1 Introduction

1.1.1 Summary

This course is about programming in OpenMP, the shared-memory interface.

CPUs got faster at ≈40% per annum until 2003, but since then have only got larger;
they are running at about the same speed they were in 2003. Vendors are increasing the
number of CPU cores per chip, initially at the same rate, but now more slowly. So the
way to get more performance is to use more CPUs in parallel, and OpenMP is a tool for
that on multi-core systems, using a shared memory processing (SMP) model. That is not
new, of course, and OpenMP was derived from a several previous mechanisms.

OpenMP is a language extension, and not just a library, because it needs to change the
semantics of the language so that the same code has a slightly different meaning. It was
designed by a closed commercial consortium – “open” just means that they do not charge
a fee to use the specification. They did and do accept public comments on the details,
but that is about all. It dates from about 1997, and is still active.

The current specification is version 5.0, but the course is based mainly on version 2.5, for
portability and sanity. Both have specifications for Fortran, C and C++. Most compilers
have some OpenMP support, though the details vary, but everything taught here should
be available and behave similarly in all current compilers.

1.1.2 Shared-Memory

Message passing interfaces (e.g. MPI) use multiple processes that run in parallel, and
communicate via special I/O channels; their memory is entirely separate and local to
where the process runs, which is why that is called distributed-memory processing. Shared-

memory ones have a single process, with mutiple threads of execution that run in parallel,
and all of the threads have access to all of the process’s memory. This is simpler in some
ways, but much more complex in others.

It is very hard to implement this efficiently and automatically on modern systems, for
reasons that will be mentioned later, so there needs to be some explicit synchronisation
between threads. Programs must follow strict rules to make that work, and OpenMP and
this course are about those rules.

OpenMP is not generally advised for running separate tasks, and you should use MPI
(Message Passing Interface) or a batch scheduler for that, or even or just run multiple

1



background processes. MPI dominates on clusters and other distributed memory systems,
and runs equally well as separate processes on a single multi-core system. But distributing
memory is very tricky, both for performance and correctness.

Shared memory means that you can avoid that, to some extent, which is where OpenMP
comes in. It is almost always used for more performance of a single program, as in HPC
(High Performance Computing), and the objective is genuine parallel execution of a log-
ically serial program. Almost all shared memory HPC programming uses OpenMP, but
an increasing amount is done with higher-level toolkits. Things may change in the next
decade, because both Fortran and C++ have added parallelism into their new standards
and there are several other plausible designs around.

The course teaches the approach taken by most people and libraries to OpenMP design,
which is a formal policy of NAG SMP, MKL, ACML and so on. This is where you start
with a well-structured serial program – in this context, that means that most of the time is
spent in a small number of components, which have clean interfaces and spend their time
in actual computation (rather than, say, I/O). You should not even attempt to convert the
whole program at once, but do it component by component, where possible. This is the
approach used in the examples, and there is more on this topic in the last lecture.

1.1.3 Apologia

The course is not what I would like to give, but that seems to be unavoidable. Some
students have complained that it spends too much time telling them what not to do, and
doesn’t tell them what to do. Unfortunately, that is the key to success in shared-memory
programming, not just OpenMP but POSIX and C++ threading as well. Shared memory
programming is seriously tricky, and doing the actual coding is the easy part. The hard
part is avoiding the ‘gotchas’, and that is why you need to know what not to do.

The worst problem is data races causing subtly wrong answers; these often escape
testing, and can be almost unfindable. Also, there do not seem to be any useful tools
for OpenMP. This means that it is easy to ‘learn’ OpenMP, but not not know enough to
use it successfully. That is a very common experience with all forms of shared-memory
programming, including people who have been on other courses. Feedback from several
users has been that this course has explained why they failed previously, and has enabled
them to use OpenMP successfully.

The obvious question is why not teach something better, and the answer is unfortunately
that there is nothing better at present, for general-purpose shared-memory programming
for scientific computing.

More about this is explained in the last two lectures.

1.1.4 Objectives and Prerequisites

This course was originally written as a “transferrable skills” course – i.e. a course given
to staff and graduate students, not as part of a degree. So it is practically oriented, and
intended for research scientists; it also teaches just the minimum subset of OpenMP needed
to write useful OpenMP scientific codes.

2



However, the course also teaches some of the computer science that underlies OpenMP,
including why things are as they are, and why certain methodologies are good programming
practice. It is important to understand the reasons behind its recommendations, and to
take note of warnings. You cannot just follow the recipes in these notes.

At the end of this course, you will be able to understand the OpenMP usage of the sim-
pler scientific research applications that use OpenMP, and be able to write fairly efficient,
portable and reliable OpenMP programs of your own. Naturally, expertise develops with
practice, but you will be familiar with enough of the potential problems to be able to avoid
most of them.

It assumes that you are already a reasonably competent programmer in one of C, C++
or Fortran 90, and can use such techniques as adding diagnostic output statements for
debugging. It also assumes that you can use Unix for program development. There are
some transferrable skills courses on those, as well as on other related aspects, which are
referred to in passing. However, they are not part of this MPhil, and you will not get
credit for them. Some of the courses I used to give may be useful, too:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/

1.1.5 Further information

There is a fair amount of material that goes with this course, including practical ex-
amples with specimen answers, to teach the use of specific OpenMP facilities. You are
strongly advised to work through most of those, as there is no substitute for actually using
a facility to check that you have understood it. There are also some specimen programs.
This material is available on:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/OpenMP/

Most books, Web pages and courses on OpenMP are very misleading, for reasons this
course will explain; it is called The Web of a Million Lies for a reason – in fact, that is
an underestimate! Parallel Programming in OpenMP by Chandra, Kohr, Menon, et al.
(ISBN: 1558606718) is listed on the HECToR Web site and is fairly reasonable, but does
not warn about about even quite serious and common problems.

The OpenMP specification is very often ambiguous, and is even inconsistent with itself
or with the languages it extends. Also, each new major version has added lots of major new
features. The result is that compilers vary a great deal in important details. Regrettably,
this means that the specification is not suitable to use as a reference unless you are both an
expert on your programming language and have some low-level implementation experience.
However, the URL for the specifications is:

http://openmp.org/wp/openmp-specifications/

3



1.1.6 Course Coverage

conditions C

Works under

conditions A

Works under

conditions D

Works under

X

conditions B

Works under

Safe

Portability, RAS, etc. of Code

Specified in standard

Just coding and

’’testing until it works’’

may end up here

Figure 1.1

In addition to the specification problems, it is even harder to test a compiler than to test
user code; the result of both of these is that the trickier features are likely to be unreliable.
This course teaches a fairly safe subset; if these features do not work, more advanced ones
are not likely to. It also teaches the simplest useful features, which are the most likely for
scientific programmers to get to work in real code.

Shared memory programming is generally not about the syntax and coding (i.e. getting
a program to compile, link and run simple tests), but is far more about knowing what to do
and what not to do. This course describes some safe practices for the two most common
programming paradigms that use OpenMP-like shared memory interfaces, that are most
likely to be got to work in real code. It also includes a large number of warnings about
potential problems to avoid and, if you follow its guidelines, you will avoid many of them.

Remember: a problem avoided is not your problem.

1.2 Using OpenMP

1.2.1 SIMD Computing

SIMD means Single Instruction, Multiple Data, and is a generalisation of the old vector
computing model; it is simplest to think about operations on whole arrays at once, as
in modern Fortran. Vector hardware is effectively defunct, though Fujitsu, NEC and
Cray still make it, and modern SIMD is handled entirely by the compiler. Fortran array
operations should work this way but the compilers often do not optimise them very well.

SSE/MMX, VMX/AltiVec and so on are SIMD features; OpenMP enables multiple
cores to be used similarly, though it is not its only use.

GPUs are also SIMD, but are currently handled in a very different way. You can use
NVIDIA or other cards for extreme performance, and the current language extensions to
do that are CUDA and OpenCL. Programs for those need a similar design to OpenMP

4



SIMD, though the actual code is completely different. Most of this lecture applies to them
as well, though the rest of the course does not.

A good optimising compiler does all of that for you (except for the GPUs), and a few
may even autoparallelise your code, so even apparently serial programs can run in parallel.
The compiler handles the synchronisation between cores, and covers up problems in the
underlying implementation (such as ambiguities in the threading memory model). In
practice, this implies gang scheduling, which is all cores operating together in a semi-
synchronised fashion. We shall cover some of these issues in more detail later.

You may well ask, if it is all automatic, why bother using OpenMP? Unfortunately, only
the simplest cases are automatic and then often only for Fortran. Also, you very often
need to write code the compiler will not parallelise.

1.2.2 SPMD Computing

SPMD means Single Program, Multiple Data, where each ‘thread’ can operate semi-
independently; for example, each of them may call a different function. This is much more
flexible, but much harder to get right, and this course will cover only the very simplest
forms of it. You are strongly advised to be cautious when using SPMD; if you attempt
to be ‘clever’ with OpenMP SPMD, you will shoot yourself in the foot. Most books and
Web pages do not teach that, unfortunately.

Unlike for SIMD, there is no major advantage in using Fortran, and we will cover SPMD
after the simpler SIMD.

You can even add inter-thread communication to SPMD, which makes it almost like
separate, communicating processes, but you are strongly advised to avoid doing that; I
will explain why when we come to it. If you really want to do this, the classic paper is
C.A.R. Hoare’s Communicating Sequential Processes, but it is hard going even for a pure
mathematician. You should also look at the memory model in the new C++ standard,
which is not easy going, either.

The simplest and easiest way of parallelising a serial program is the following:

• Set the compiler options for full optimisation; if it is available (e.g. with Intel compilers)
select autoparallelisation.

• Do some fairly high-level profiling of the code on some representative data, and consider
just the areas that take the most time. You should add some timing code around the
interesting areas to measure how changes improve the performance (or do not).

• Try adding calls to parallel library functions, such as using the LAPACK ones in MKL
or ACML. Doing this is a good idea even in serial code, because those are often well
optimised.

• Make sure that you link with a parallel version of the library, set appropriate environ-
ment variables and use a multi-core system. If the results are good enough, then you
have done all you need to, and can go and do something else.

• If not, add some SIMD directives where they make sense and are likely to help. Many
compilers, such as Intel’s, will tell you if they have parallelised loops and so on. Now
look at the performance improvement, if any.

5



• If that is not enough, change your code to improve its parallelisability or use SPMD
directives. Only if you have to go further than that, worry about more advanced par-
allelism.

Is that too good to be true? Yes, a bit, but it is worth trying; an ancient engineering
principle is that the simplest solution that does the job is the best solution.

1.2.3 Basic OpenMP Use

In OpenMP, programs start by running serially, as usual. OpenMP directives are used
to specify regions that are run in parallel using mechanisms that are hidden from the
programmer. It is important to note that a call to a parallel library function is also a
parallel region. The regions are executed by some number of serial threads, but simple
OpenMP use does not consider the threads explicitly. Directives are are also used to
specify properties of variables, such as whether they are shared between threads, private
to a thread, and so on.

Writing the OpenMP directives is the easy part of this; the real problem is using them
correctly and efficiently. We shall divert slightly before we start to consider that, and see
how to tune for SMP without doing any special coding. You can and should use the same
techniques for real OpenMP coding. This is always how to start OpenMP programming,
or almost any other shared-memory programming. After all, why keep a dog and bark
yourself?

1.2.4 Basic Tuning

The key principles of tuning are:

• You should use the compiler, rather than trying to bypass it (as far too many Web pages
and books on C recommend). You cannot hand-optimise properly for modern CPUs,
so do not handicap the compiler when it tries to do so.

• Optimise for memory access, and not for calculation. Also, memory latency is nowadays
the main bottleneck rather than bandwidth, except in a few codes. Modern CPUs can
execute somewhere between 100 and 1,000 instructions for every main memory access.

• Modern CPUs rely on caching for performance, so ensure that your code is cache-
friendly. Cache problems will not cause wrong answers, but will cause OpenMP to run
slower than serial code.

Lastly, keep the scheduling really, really trivial. There is some more on this later, but
it is a horribly complicated area; for now, simply ignore this.

The key technique for helping the compiler is to keep your code as clean and and as
simple as possible. It is not possible to overstress the importance of this for optimisation,
but there is no time in this course to mention details except in passing. This is as impor-
tant for serial optimisation as it is for OpenMP, and is also a massive help when debugging
your code. The most important single example is to make your DO- or for-loops, clean,
simple and long; we shall describe some aspects of this later.

6



1.3 Programming in OpenMP

1.3.1 Terminology and Correctness

Aliasing refers to the case when two variables overlap, either in whole or in part. The
most common form is two names for the same location, but there are many others once
one uses compound objects like Fortran arrays or derived types, C structures and C++
classes. Aliasing bugs are illegal in serial code, but often show up only when the code is
run in parallel.

Atomic means that an action does not overlap with another atomic action; it does not
always imply consistency, and the rules for how atomic actions interact with non-atomic
ones are complicated. This is described later.

A data race is caused when two non-atomic actions overlap, or often when an atomic
one overlaps with a non-atomic one. The effect is completely undefined, and is often often
complete chaos.

Synchronisation refers to coding to prevent data races, and a lot of this course is about
precisely doing that.

The number one approach for ensuring correctness to avoid even correct aliasing as
much as possible – i.e. avoid two threads accessing the same location, except when all of
those accesses are read-only. To do this, minimise the update of global objects, which
includes anything not passed as arguments; this includes Fortran modules, C extern, C++
static members, any pointers and so on.

And, most of all, never access anything both globally and via arguments unless you
can guarantee both accesses are read-only to the whole object. Doing this is required by
Fortran, but OpenMP requires much the same for C and C++.

1.3.2 Compiler Options

Use reasonably aggressive optimisation but, as with many parallel interfaces, sometimes
the absolute maximum causes problems. You should also use inter-procedural optimisa-
tion and possibly inlining, which are almost essential for effective optimisation of C and
C++. Obviously, you need to enable OpenMP, and perhaps automatic parallelisation;
only a few compilers have the latter, and typically only for Fortran.

Unfortunately, the details are too compiler- and version-dependent to cover here. It
is generally a bad idea to use optimisations that are specific to the particular machine
you are running on (including profile-guided optimisations), or even the very specific ones.
The ones to consider first are called things like -Ofast, -O3, -ipo, -fopenmp, -openmp,
-mp, -parallel and so on.

1.3.3 Profiling

It is always worth starting with this, but all you need to know for most OpenMP tuning
is where the time goes – i.e. the percentage of the wall-clock (real, physical) time spent in
different regions of code. Using CPU time can be better on shared systems, but is much

7



harder to use to profile and tune. Function-level profiling, such as -pg and gprof, is quite
adequate. Alternatively, writing your own profiling is very easy, and you can print out
just the times you need.

Start by looking to see where most of the time goes; this can sometimes be in a commonly
used auxiliary function, which may not be suitable for parallelising; if so, you need to look
for a higher level. Tune the most important area, and then try again. You should leave
any fancy profiling until very much later, and probably not do it at all!

The following timing functions are available:

CPU time Wall-clock time

OpenMP omp get wtime

C/C++ clock() time()

Fortran CLOCK SYSTEM CLOCK

C and C++ time() is very imprecise (it returns the time in whole seconds). clock()

and CLOCK often return a resolution of 0.01 seconds, though that is not guaranteed. I use
the POSIX gettimeofday() function for a reliable high-precision timestamp; it is callable
from Fortran, and works equally well in serial code:

/* Return high-precision timestamp. */

#include <stddef.h>

#include <sys/time.h>

double gettime_ (void) {

struct timeval timer;

if (gettimeofday(&timer,NULL)) return -1.0;

return timer.tv_sec+1.0e-6*timer.tv_usec;

}

For now, do not use Omp get wtime, because we need to declare it; that is easy to do,
but I would rather leave it for now. Use the language’s built-in timers (or the above timer,
if you prefer). The examples will use them, for simplicity, but the C examples actually
use the above code. It really does not matter which timers you use; that applies to all
tuning, and not just to OpenMP.

1.3.4 Using Libraries

Most systems have some libraries tuned for OpenMP, and the easiest tuning is to change
your code to use them. Suitable ones include AMD’s ACML, Intel’s MKL, the NAG SMP
library and FFTW. These include all of the BLAS and LAPACK, and more; generally, the
most useful procedures are the ones for dense linear algebra and fast Fourier transforms.
You may need to restructure your code to use them, but this will also help for serial
execution, and really does pay if your arrays are fairly large. This is especially true for C
and C++, where the optimisability of the language is poor.

For Fortran, try changing uses of MATMUL to calls to Z/DGEMM (gfortran has an option to
do this); matrix×vector operations (i.e. Z/DGEMV) usually deliver less benefit, and look for
anywhere else you can call libraries. This is of little use for very small (e.g. 4×4) arrays,
though. You also need to watch out for array copying problems; these are covered in

8



another course: Introduction to Modern Fortran, especially in Advanced Use Of Procedures

and Advanced Array Concepts.

For C and C++, libraries can be used to provide array operations, and emulate Fortran’s
whole array operations; this can make the code clearer and a lot faster. But, again, this
is of little use for very small (e.g. 4×4) arrays. Issues with the C++ Standard Template
Library (STL) will be covered later.

1.3.5 Environment

By far the most important ‘mode’ is the number of threads. You should always start
tuning by trying different values and, later, try varying the number of threads in combi-
nation with other optimisations.

For SIMD, you should never exceed the number of CPU cores, which should not count
hyperthreading or other SMT mechanisms. The main reason is that you need to optimise
memory access, and not calculation, but there are also scheduling and other reasons.

It is well worth considering the use of fewer threads than cores, and this is especially
important if system used for anything else. The reasons for this are covered in the course:
Parallel Programming: Options and Design.

All of OpenMP’s environment variables are in upper-case and start OMP , and there is
only one that is critical:

export OMP NUM THREADS=<n>

Two others can be useful for SIMD programming, but are less important and you need
not understand what they do for now:

export OMP SCHEDULE=static

export OMP DYNAMIC=false

There are a few others that can be useful, and we shall cover them as we need them.

1.3.6 Library Examples

This first lecture actually gains enough performance for many people, and those people
could stop now, but this is a course on actually using OpenMP! It is worth trying the
simple approach first, though, just to see what happens.

There are two simple linear algebra examples:

Programs/Multiply.f90 and Programs/Multiply.c is standard matrix multiplication
using the obvious code.

Programs/Cholesky.f90 and Programs/Cholesky.c solves some positive definite of
symmetric linear equations using Cholesky’s method; the code was taken from LAPACK,
but simplified and modernised.

You should start by looking at them and seeing what they do; for now, just look at
the main program. They do the calculation in two different ways: calling the BLAS or
LAPACK routines, and using the example code in the relevant language. In addition, the
Fortran also uses its intrinsic procedures where relevant (i.e. MATMUL).

9



The objective is to try the effects of optimisation (-O3) versus no optimisation, to try
the effects of different libraries

Basic: -lblas and -llapack

Tuned: -acml or -mkl rt

Parallel: -acml mp or -mkl rt

and to try the effects of thread count

export OMP NUM THREADS=1

export OMP NUM THREADS=4

All of methods and libraries should give the same answer, so you are looking for how to
reduce the time. You should look at both the wall clock time and CPU time; in the parallel
context, it is the former you optimise and the latter is likely to increase. Where the wall
clock time and CPU time are the same, the execution is serial, and level of parallelisation
is essentially the ratio; the improvement due to that is the factor by which the wall clock
time has been reduced.

10


