
Introduction to OpenMP

Critical Guidelines

N.M. Maclaren

nmm1@cam.ac.uk

September 2019

7.1 Some Sordid Details

7.1.1 Apologia and Refrain

The previous lectures were an oversimplification, and roughly translate to “This is a

footgun; pull its trigger to see how it works”. Including even critical warnings was just
too confusing, so they were separated out and included here, even though a few were still
left in. There are also a few forward references to some features that will be described in
next lecture.

This lecture is mainly what you need to know, but do not want to, and here is a reminder
of the picture we saw at the start:

conditions C

Works under

conditions A

Works under

conditions D

Works under

X

conditions B

Works under

Safe

Portability, RAS, etc. of Code

Specified in standard

Just coding and

’’testing until it works’’

may end up here

Figure 1.1

This lecture may discourage you from using OpenMP, but that is not its purpose, and
the next lecture describes when, why and how to use OpenMP. It is much trickier to use
than MPI, but this course has described how to use it safely and simply, and it does have
some significant advantages over MPI. The main principle is to keep gotchas out of parallel
regions because, outside all of them, you are programming serially and the usual language
rules apply. Unfortunately, this lecture is about lots and lots of gotchas.

Remember that KISS stands for Keep It Simple and Stupid, problems increase expo-
nentially with complexity, and it is rule number one for using OpenMP.

1

Shared memory programming is seriously tricky; doing the actual programming is the
easy bit, and avoiding the gotchas is the hard bit. That includes avoiding deficiencies in
the language standards and, even more, deficiencies in the OpenMP specification.

We shall now cover some of the reasons why this is, and some guidelines on how to avoid
problems.

7.1.2 Generic Warnings

Most of the warnings apply to both Fortran and C/C++, though C/C++ has many
more gotchas; Fortran has some specific to it, too, so it is not all one-sided.

Unfortunately, this lecture needs to do a lot of language-flipping. Also, warnings for
one language may apply to other languages, so take note if you use the equivalent facility.
In particular, some Fortran ones apply to C++ as well.

An example of this is not to touch volatile in C/C++ – it is completely broken, from
start to finish, though the explanation is far too complicated for this course. But why
does that not apply to Fortran?

The actual Fortran standard is much less inconsistent with itself (and implementability)
than the C standard, Fortran volatile is rarely recommended in books and Web pages,
and very few programs use it. It does not actually work any better, of course, but you
are much less likely to be tripped up by it.

In Fortran, lines starting !$ and a space are significant, because they are OpenMP
Fortran preprocessing lines (which I do not recommend using). The only safe rule is
never to start any comments with !$ other than OpenMP directives.

In C/C++, remember that C and C++ pragmas get preprocessed, so do not define
OpenMP keywords as macros either in your code or in anything that it includes, and
watch out for any non-C/C++ headers you include.

I do not recommend using conditional compilation, but if you must, this is how. In
C and C++, the preprocessor symbol OPENMP is set to the integer value yyyymm, where
yyyymm is the date of the OpenMP API that the compiler claims to use; there is probably
no canonical mapping from or to version numbers, so you have to use the date of the
specification document! In Fortran, if a line begins with !$ and a space, then the !$ is
removed (actually replaced by two spaces) in OpenMP mode, and so the line is executed;
obviously, it is left unchanged if not in OpenMP mode, and so the line is not executed.
There are more variations, but that is the basics.

OpenMP facilities are necessarily impure, except for the simple information functions, of
course, so Fortran programmers must not use them in PURE or ELEMENTAL procedures. It
is not advisable to use them even in functions, and that includes in subroutines called from
functions. Fortran allows aggressive optimisation of expressions (unlike C and C++), and
so function calls are not always executed.

The same remark applies to C++ constructors and destructors, for different but related
reasons.

2

7.1.3 Call Chain Issues

In all languages, watch out for code like:

void fred (...) {

/* This */ double a = joe(), b = bert();

/* or */ if (...) {b = joe();}

/* or */ for (i = 0; i < n; ++i) {c = joe();}

/* or */ d = bill(bert(),joe());

/* or */ d = bert() + joe();

}

double joe () {

#pragma omp ...

}

void bert () {

#pragma omp ...

}

All of the parallel, work-sharing and barrier directives are collective, and must execute
on all threads in the same order. Three of those are not defined to do so by the C
standard, and two will not do so if you make a simple mistake – do you know which?

This applies to all loops, conditionals and branching. In addition, it applies to all
function calls in Fortran, anywhere, and ones in C/C++ when they occur in argument
lists, initializers, constructors and destructors. Only a language lawyer knows what is
defined and what is not.

• As usual, the best way to avoid problems is keep it simple and stupid.

Nested parallelism and tasking has similar problems, and it is often necessary to share
private variables. The meaning of shared has drifted over time, and is now somewhat
inconsistent. It currently means shared over all threads in the current region, not over all
threads. For example, you can have private in one region and shared in a nested region,
and that means that each parent thread’s variable are shared with its children, but not
with its sibling threads or their children.

Alert: treat this as sweating dynamite, and use it with extreme care. Both you and
compilers may get confused, and the result will be chaos.

For complicated reasons, do not make DO/for loop variables shared, especially in
Fortran (where they are private by default, because many compilers object.

3

7.1.4 Types in Directives

The OpenMP specification is very sloppy in places. While it defines most of the syntax
fairly precisely, it leaves a great many ambiguities in the language bindings, and imple-
mentations may vary. You can pass values in variables to some directives, but it does not
specify what types they are allowed to be.

• This is not about variables in data clauses.

It is about the N in schedule(static,N), and other expressions allowed in some direc-
tives. Here are some safe rules for portability and reliability:

• Use default integers, when an integer is needed. That is INTEGER in Fortran and int

in C/C++.

• Similarly, when a truth-value is needed, use LOGICAL in Fortran and int (not bool)
in C/C++.

You can probably use any size of integer, but there is no need to, so the above rules are
not restrictive.

7.1.5 C/C++ Directive Use

C and C++ are very serial languages; consider the expression: execute(f(),g());.
In Fortran, f and g may be called in parallel or not called at all, under some circumstances.
In C and C++, they are called sequentially in either order: i.e. f and then g, or g and
then f.

• OpenMP directives take the Fortran approach; any conflicting side-effects are unde-
fined behaviour.

It applies to the values in schedule clause, and anywhere you have an expression in a
directive. For example:

#pragma omp parallel schedule(static,f())

Or, using facilities we have not yet covered:

#pragma omp parallel num threads(f()), if(g())

7.1.6 The Default Clause

I do not recommend this, but OpenMP does; the syntax is default(which), where
which is shared, private, firstprivate and so on. It is hard to describe exactly what
it controls, and I regard that as a recipe for making mistakes.

• It will also introduce other gotchas, quietly.

• default(private) is particularly dangerous; you will see why this is as we go on.

7.1.7 Parallel Problems

Most bugs do not show up in simple test cases, because failures are almost always prob-
abilistic, and the probability often increases rapidly with the number of threads. I cover
this in a little more depth in the course Parallel Programming: Options and Design. The

4

solution is to be really cautious when coding, remember that compilers differ considerably,
and the more optimisation you have, the more you are at risk.

• Do not just run a test and see if it ‘works’; i.e. that your compiler, system or test
does not show the problem.

A simple example that we used before shows this:

#pragma omp parallel

{

double av = 0.0, var = 0.0;

#pragma omp for reduction(+:av)

for (i = 0; i < size; ++i) av += data[i]

#pragma omp master

av /= size;

#pragma omp for reduction(+:var)

for (i = 0; i < size; ++i)

var += (data[i]-av)*(data[i]-av)

}

If thread 0 finishes last, there is no data race, so checkers will not find one. Otherwise,
there may be one, and some threads may use the total where they should use the mean
when calculating the variance.

You may well have a probabilistic race-condition with MTBF (mean time between fail-
ures) of many hours. When you run a realistic analysis, it may not work, and track-
ing down such bugs is a truly evil task. Unfortunately, that is an inherent property of
unchecked shared-memory threading, such as OpenMP. For race conditions and similar
bugs, very often, erroneous code will work in testing, but:

with a probability of 10−12 or less,
or if there is a TLB miss or ECC recovery,
or when moved to a multi-board SMP system,
or if the kernel takes a device interrupt,
or when moving to new, faster CPU models,
or if you are relying on an ambiguous feature,
or . . .

then it will give wrong answers, sometimes.

Consider a race condition involving K entities, where entities can be threads, locations
or the combination. The failure rate is O(NK) for some K ≥ 2 (and it is often 3 or 4).
This can also occur when assuming more consistency than exists; see later for details of
this nightmare area.

As mentioned before, you can sometimes make use of schedule(static,1), which will
cause successive iterations to be allocated to threads in a round-robin fashion, and may
help to expose conflict between adjacent iterations. Reorganising loops achieves this effect
more generally, and a common property is the trick tends to work best when the code is
most inefficient!

Updates may not transfer between threads until you synchronise, but they may do

5

so, which is deceptive. In general, shared memory will synchronise itself automatically,
but when? The answers is now, later, sometime, mañana, faoi dheireadh; i.e. somewhere
between immediately and the end of time, with no guarantee. So incorrect programs often
work most of the time, but may fail, occasionally and unpredictably.

• Any diagnostics will often cause them to vanish, by introducing enough of a delay
for the memory to synchronise itself.

This also makes it utterly evil investigating data races.

7.1.8 Memory Models

Shared memory seems simple, but is not simple at all, and the obvious orderings of effects
often fail to hold. This is too complicated (and evil) to cover properly in this course here,
and the following is just an indication of the issues. If you want to learn more, suitable key
phrases to look up include: Data Races (a.k.a. Race Conditions), Sequential Consistency,
Strong and Weak Memory Models and Dekker’s Algorithm.

Serious masochists should look at the proper references, including academic papers such
as those by Peter Sewell and colleagues:

http://www.cl.cam.ac.uk/˜pes20/weakmemory/index.html

or Intel’s actual specification:

Intel(R) 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1, 8.2 Memory Ordering

http://developer.intel.com/products/processor/manuals/index.htm

If you follow the guidelines here, you can ignore those but, if you start to write ‘clever’
shared-memory code, you had better study them! Here are some graphical examples of
what can and does happen, with low probability:

Main Consistency Problem

Thread 1

A = 1

print B

Thread 2

B = 1

print A

Now did A get set first or did B ?

− i.e. B did00 − i.e. A did

Intel x86 allows that − yes, really

So do Sparc and POWER

Figure 1.2

6

Thread 3

X = A

Y = B

print X, Y

Thread 4

Y = B

X = A

print X, Y

Now, did

get set first

or did B ?

1 0 0 1 − i.e.− i.e. Adid B did

Thread 1

A = 1

Thread 2

B = 1

A

Another Consistency Problem

Figure 1.3

How That Happens

Thread 4 Thread 1 Thread 3Thread 2Time

A = 0
B = 0

X = Y =

Get A Get B

< P > A = 1 < R >B = 1

Y = X =< Q >

< P >

< S >

< R >

< S >< Q >

means a temporary location<x>

Get AGet B

Figure 1.4

It is often said on the Web and in books that it is just due to too much optimisation,
but that is not, repeat not, true! It is allowed by all of the C99, C++03 and Fortran
standards, and it is one of the common hardware optimisations.

• It can happen even in unoptimised code.

Regard parallel time as being like special relativity, where different observers may see
different global orderings.

7.1.9 OpenMP Debugging

As a summary of the above:

• Failure is often unpredictably incorrect behaviour.

• Variables can change value ‘for no reason’, and failures are critically time-dependent.

• Serial debuggers will usually get confused, and even many parallel debuggers often
get confused, especially if you have an aliasing bug.

7

• A debugger changes a program’s behaviour, and the same applies to diagnostic code
or output; problems can change, disappear and appear.

That sounds like a counsel of despair, but there are things you can do, which is why
this course has so many “dos” and “don’ts”. The object is to not make errors in the first
place, and especially avoid ones that are hard to debug. You should try to avoid ever
needing a debugger; follow the guidelines here and you rarely will. Some tools that may
help are described in the next lecture.

7.1.10 Data Environment

The OpenMP specification is a bit sloppy in this area, too, compilers vary and simple
tests can be misleading, so write very conservative code and do not try to be clever. It
is also a very hard issue to get your head around, and it dominates bugs, debugging and
tuning.

• Rule number two is KISS, KISS.

The second KISS is Keep It Separate, Stupid; i.e. keep private and shared variables
very distinct. OpenMP is such that the same name can mean both, depending on the
context, and the same rule also applies to the use of pointers. For example, this is not
good practice:

static int fred ;

void fred (void) {

fred = 123 ; /* shared */

#pragma omp parallel private (fred)

{

fred = omp_get_thread_num () ; /* private */

}

fred = 456 ; /* shared */

}

The precise rules are very complicated, and I recommend you to ignore them. It is best
to think in terms of the following model, except where behaviour is explicitly specified,
such as for firstprivate:

• Private versions exist only in parallel regions; their values are undefined on entry,
and lost on exit.

• Do not access the shared version in a parallel region. Also, a shared variable becomes
undefined on exit if it also has a private version.

The second problem is that other procedures (subroutines and functions) can access
global data directly, if they are in Fortran modules or common, C external or static vari-
ables, or C++ class members (i.e. ones marked static); and, of course, the same can be
done using pointers.

• If you access a private version in a parallel region, then never access it directly
during that.

8

Doing either is fine, doing both leads to chaos. It is easier to obey this rule than
describe it. Here are some examples of what OpenMP specifies to show why I recommend
avoiding this mess:

Fortran Example:

module pete

integer :: joe = 123

end module pete

integer function fred

use pete

fred = joe

end function fred

use pete

print *, joe ! 123

!$omp parallel private(joe)

print *, joe ! Undefined value

print *, fred() ! Undefined behaviour

joe = omp_get_thread_num()

print *, joe ! Thread number

!$omp end parallel

print *, joe ! Undefined value

C/C++ Example:

int joe = 123; /* joe is an external static variable */

int fred (void) {

return joe;

}

printf("%d\n",joe); /* 123 */

#pragma omp parallel private(joe)

{

printf("%d\n",joe); /* Undefined value */

printf("%d\n",fred()); /* Undefined behaviour */

joe = omp_get_thread_num();

printf("%d\n",joe); /* Thread number */

}

printf("%d\n",joe); /* Undefined value */

7.1.11 Classes of Code

There are three important classes of code:

• Serial code, outside all parallel regions.

9

• Synchronised code, protected by critical, single or, with reservations, master.

• All other code, which may run in parallel.

Remember the following are not synchronised:

critical name1 and critical name2

Anything else versus critical constructs

Anything else versus unbarriered master

A variable accessed in both synchronised and other code must be protected against race
conditions between the two; that is not needed for read-only variables, of course. One of
the best approaches is to:

• Divide sensitive actions up into separate groups.

• Ensure no overlap of actions between groups.

• Protect every use of each group by one of a single critical name, single or a
barriered master.

Using a fully-synchronised form is safest, as was described in the previous lecture,
because there is no automatic synchronisation on entry to a work-sharing construct.

7.1.12 Calling Procedures

A construct has an associated lexical scope, which is the actual text of the program to
which it applies, such as:

!$OMP PARALLEL

< lexical scope >

!$OMP END PARALLEL

#pragma omp parallel

{

< lexical scope >

}

We described the shared/private defaults earlier, but what rules apply to a procedure
called in that? Such procedures are called several times in parallel; for example:

!$OMP PARALLEL

CALL Fred ! What are the rules inside Fred?

!$OMP END PARALLEL

#pragma omp parallel

{

fred () ; /* What are the rules inside Fred? */

}

We shall start with code compiled with an OpenMP option; the rules are almost identical
to the lexical scope ones; we shall repeat them, but more precisely than before.

10

All these inherit from what they refer to:

• All Fortran arguments except VALUE

• C++ reference arguments

• Pointers, which are described later, and are not easy

The following variables are shared:

• Any form of global or static data

This includes Fortran module variables, COMMON and anything in it, any initialised vari-
able or one with the SAVE attribute, C/C++ static and extern variables, C++ class
members (i.e. ones marked static) and, somewhat bizarrely, C++ const variables with
no mutable members.

The following variables are private:

• Anything explicitly declared as threadprivate

You can use this to override the defaults, but be careful.

• Ordinary C/C++ automatic variables and Fortran VALUE arguments

This includes C/C++ non-reference arguments. Remember that Fortran initialisation
sets SAVE, which is easy to miss, and that Fortran local variables use the default rules.

• Fortran DO-loop, implied-do and FORALL indices

C/C++ programmers need to watch out for nested loops; only the indices of the actual
loops parallelised by an OpenMP for directives are automatically private.

7.1.13 Fortran Association

Fortran passes arguments by association; this is usually implemented as either reference
or copy-in/copy-out, though other techniques have been used in the past and will be in the
future. Copy-in/copy-out is the one that causes the problems. This is often described as
the array copying problem, though it applies to both scalar and array arguments and, gen-
erally, it is dependent on both the compiler and the optimisation used. It will necessarily
happen in some circumstances, most commonly:

• Passing assumed-shape or non-contiguous array sections (e.g. ones with vector in-
dices) to explicit-shape or assumed-size dummy arguments.

This is often viewed as passing Fortran 90 data to Fortran 77 interfaces, which is not
a bad way to think of it. The problem is that OpenMP barrier operates only on the
current data and, upon return, the copy-out does not synchronise.

• Do not rely on barriers to synchronise arguments, unless you are sure they have not
been copied.

Note that this applies to all levels of call, and not just to calling the procedure that ac-
tually calls OpenMP barrier or another directive that implies it. It is not a catastrophic
problem in practice, if you watch out for it.

C++ classes potentially have similar issues to Fortran, and this applies to non-trivial
classes whether you define yourself or use them from the C++ STL; you are relatively

11

unlikely to hit them, but it is fairly likely for move or copy constructors, copy assignment,
and when using callbacks from the STL or similar.

• Always assume such things may be called in parallel.

You should avoid using any directive that implies a barrier or other synchronisation in
such places, unless you are sure that the specification makes it safe.

7.1.14 ‘Dynamic Storage Duration’

OpenMP includes the following in two critical places: Objects with dynamic storage

duration are shared. OpenMP 2.5 used ‘heap-allocated storage’, which is even more con-
fusing. Heaven alone alone knows what that means – Watch Out! There used to be at
least three different opinions among experts, and may well still not be.

Only C++ has the concept of ‘dynamic storage duration’, which means objects allo-
cated by operator new. We can extend that to C objects allocated by malloc and Fortran
POINTER variables allocated by ALLOCATE, though there are also other possibilities. How-
ever, all of those are executed and not declared, so each thread will necessarily do them
separately, so they are necessarily private to each thread! That makes no sense.

• What it probably means is that the pointer may be stored in a shared variable used
only by that thread and, after synchronisation, may be used as shared data.

7.1.15 Language Built-ins and Global State

This refers to the Fortran intrinsic procedures and the functions in the C and C++
libraries, except for I/O and exception handling, which are described later. OpenMP
specifies that they are all thread-safe, but there are some cases when that is obviously
impossible. There is no problem for Fortran, except for two procedures, and C++ is OK,
too, but its inheritance from C is not. Watch out! That is quite a lot of the C++ library.

As an aside, POSIX now includes the whole of C99, and specifies parallel (threading)
semantics. Well, it does in theory. However, this area of POSIX makes very little sense
(it is inconsistent with both C99 and itself and unimplementable in places), and it is
unlikely it will match reality on most systems.

• It is best to ignore POSIX in this regard.

Here are some rules that are generally reliable.

• Never change program state in parallel code.

Do it in the main, serial code and propagate it, and it is best to do it before first parallel
region. Fortran has very little, but C (and hence C++) has more. You should call all of
the following from serial code only:

EXECUTE COMMAND LINE, RANDOM SEED

system, srand, atexit (and exit if there are any atexit functions), setlocale

As far as random numbers are concerned, OpenMP conflicts with C and POSIX; using
rand unsynchronised may fail horribly. Calling RANDOM NUMBER in Fortran might fail as

12

well, but that is less clear. The simplest and safest solution is to synchronise the calls to
RANDOM NUMBER and rand.

The C++ random numbers should also work if each thread uses a separate engine
instance, but the statistical properties may be poor. Parallel random generation is a
specialist area, and most books and Web pages are misleading or just plain wrong. A
reliable authority is Pierre L’Ecuyer.

Some C functions return pointers to internal strings, and will often use a single internal
string for all threads. You should use all of them within synchronised code only, and
copy the data to somewhere safe as soon as possible, and definitely before leaving the
synchronised region. These are mainly tmpnam, getenv, strerror and most of the C
functions that return date strings.

There are some extra gotchas for the multibyte functions, but those monstrosities are
best avoided, for reasons outside this course. As mentioned, I/O and exceptions are de-
scribed later. Most of the rest of the C library should work, though some of it may be
very slow, because of interlocking.

Remember that C++ inherits a lot from C.

7.1.16 The C++ Standard Library

OpenMP 3 has added support for this, so here are some warnings; even following these,
some implementations may misbehave. The C++ standard is specifies this area very
poorly, and can be read in many different and incompatible ways. The following guidelines
follow the intent of WG21 (the C++ standards committee) and are generally safe:

• const functions and methods read the container and object but do not update it.

• Using an iterator it may read the container it corresponds to – indexing (it[n]) will
do so with some libraries. Only dereferencing (*it and it->mem) definitely do not,
though equality comparison (it1 == it2 and it != it2) probably will not.

• Just using a container’s elements does not use the container, though assigning to
elements and using swap on iterators may do under some circumstances in some
implementations.

• Updating separate containers does not conflict.

• Updating separate elements of a single container does not conflict, except for
vector<bool>, where it does.

• Replacing elements by assigning to them and using swap iterators works for
basicstring, array, deque and vector, but doing that on elements of other contain-
ers may update the container, under some circumstances in some implementations.

• Updating a container in any way whatsoever may conflict with all iterators, even if
the C++ standard says that they are not affected by the update. The reason for
this is the way that OpenMP needs to parallelise code.

In summary, the following is safe in parallel regions:

• Any operation that is entirely read-only.

13

• Updating separate containers.

• Updating separate iterators to the same container.

• Updating, but not replacing or exchanging, separate elements of the same container.

• Replacing or exchanging separate elements of a basic string, array, deque and
vector (though not vector<bool>) container.

For these reasons you should use only iterators to those containers in omp for.

When using other parts of the C++ standard library, though should follow guidelines
given elsewhere in this lecture, and the following extra ones for code in parallel regions:

• Update only separate objects in parallel regions, and watch out for indirect objects
like locales; traits and similar read-only classes are not a problem.

• Do not use allocators, because doing so safely is extremely tricky.

• Do not use C++ threading, atomics or futures, because they may conflict with the
OpenMP implementation.

• Avoid valarray and smart pointers, though it is probably safe, because I found that
trying to match up the C++ and OpenMP wording, together with a knowledge of
how the latter is implemented, was just too confusing.

• Use separate streams or see earlier comments on parallel I/O; even opening and
closing separate files is risky.

• Remember that the C library has worse problems, which are described elsewhere in
this lecture.

7.1.17 Non-OpenMP Procedures

This refers to anything not compiled with an OpenMP option, including libraries that
do not explicitly support OpenMP.

• You can always call such procedures from serial code, and almost always from syn-
chronised code.

• Calling them in parallel is undefined behaviour, and anything may happen; you
should check if you need to select a special library for OpenMP.

There are a few other things that are fairly safe, but you need to know quite a lot about
the code, the language and compiler technology to call such things reliably.

7.1.18 Fortran and Private

OpenMP may need to allocate shadow versions; the following will use 256 MB per
thread:

COMPLEX(KIND=dp) :: array(256,256,256)

!$OMP PARALLEL PRIVATE(array)

You are allowed private COMMON blocks, but do not use the facility, because needing them
is a sure sign of being out of control; you should be using modules instead, anyway.

14

Never make anything EQUIVALENCEd private, not even if all EQUIVALENCEd names are
private, because OpenMP’s rules are truly mind-boggling. You should not be using EQUIV-
ALENCE, anyway, though some older codes do.

Remember that all variables become undefined on entry and exit to parallel regions;
that is not good news for ALLOCATABLE variables, and OpenMP requires them deallocated
in both places, so you must:

• Deallocate the shared version before entering.

• Deallocate the private versions before leaving.

7.1.19 C/C++ Private Arrays

Do not even think of using them

C/C++ arrays are often not really arrays; except when actually allocating the space to
store them, they are usually pointers. Regrettably, the C and C++ standards are badly
ambiguous here, and the OpenMP specification is inconsistent with them, anyway.

• C/C++ private arrays do not work reliably.

7.1.20 Pointers

Pointers in parallel code are a snare and a delusion, and many experts think languages
should not have them at all; let us not be dogmatic, but stick to the following for safety:

• Use shared pointers to point to shared data. You should set or change them only
in serial code, and can then read their values anywhere in parallel code.

• Use private pointers to point to private data. You must use them only within the
same thread, and they become undefined on leaving the parallel region.

It might appear reasonable to include changing shared pointers in synchronised code,
and using private pointers to read-only shared data – both of which, theoretically, should
work reliably. But there are some truly evil language standard issues so, in practice, doing
that is living dangerously. You may need to do so for some codes, but watch out.

Treat private pointers (even in C/C++) like Fortran allocatable:

• Set them to null pointers before entering a parallel region.

• And again before leaving the parallel region.

Remember to free malloced memory first, if needed, to avoid leaks; Fortran will release
the memory automatically. There is no problem if the private pointers are declared inside
the parallel region.

• Cray pointers are a common Fortran extension, and some programs use them; never
make them private.

Using them is not advisable even in serial code but, if you really have to use them, treat
them as always shared, and never let OpenMP default them to private. But they are a
minefield together with OpenMP.

15

7.1.21 Reduction Constraints

I advise being cautious, whatever OpenMP implies. OpenMP says the variable must be
shared; that is only so that the compiler can treat it specially, and is not a major problem.

There are also some truly evil problems with argument passing that you need to be an
implementation technique expert to recognise. The following are some safe rules:

• Never pass the reduction variable as an argument to a called procedure.

• Never set a pointer to the variable, or even take its address.

• Stick to scalars of built-in arithmetic types. This is any of the integer, real or logical
ones, plus complex in Fortran only. You can almost certainly use any Fortran KIND

or standard C/C++ size, but avoid the optional C/C++ sizes.

Most compilers will get those right, or complain. Beyond that, you are asking for
trouble.

If you need reductions on arrays, C++ classes or Fortran derived types, you probably
need OpenMP 3.1 support or even 4.0, certainly for the last two. You need to check that
they work in your compiler.

• Do not rely on them working in any other compiler.

7.1.22 I/O

I/O is a problem in all parallel languages; OpenMP says almost nothing, leaving it
ambiguous. The following is what is almost certainly safe, and it will work even if you
use OpenMP on a cluster:

• Open and close files in the serial code.

• Ideally, do all I/O in the global master thread, and definitely do all I/O on stdin,
stdout and stderr there.

Often that is not feasible, or at least very inconvenient, and the following should be
reliable on multi-core CPUs:

• Synchronise open and close against all other I/O.

• Use any one file or unit in a single thread only; that will also work on clusters, usually
not in the way that you expect.

• Read from stdin in the global master only; synchronising its use may work, but will
not always do so.

In addition, you must do all of the following:

• Set line buffering on stdout and stderr in C/C++, such as by using
setvbuf(stdout,NULL, IOLBF,BUFSIZ). You must do that in serial code, and do it
early.

• Synchronise all output to stdout and stderr.

• Write whole lines in a single synchronised section, and do not assume that stdout
either is or is not the same as stderr.

16

If you cannot set line-buffering (as in Fortran), before leaving every synchronised section
with an I/O transfer in it:

• Use the FLUSH(unit) statement in Fortran; if your compiler does not have it, try
using CALL FLUSH(unit).

• Call fflush(stream) in C/C++.

Regrettably, this applies even for diagnostics, and you should use one or the other
technique even for stderr, or your diagnostics may be almost incomprehensible.

7.1.23 Exception Handling

Cross-context exception handling is pure poison, and you should handle exceptions only
in the raising context. This includes errno, C++ exceptions and more – anything that
indicates an exceptional condition. But what is a context in this sense?

A parallel or work-sharing or similar construct (i.e. anywhere that OpenMP may
switch system thread), and remember the context changes on both entry and exit.

This also includes pretty well anywhere in a task with untied. The reason is that
exceptions are bound to a system thread, which may well not be the same as an OpenMP
thread, and the consequence is:

• Exceptions become undefined at every boundary; i.e. both the entry to and exit from
the closest enclosing construct.

• Never include a construct in a try block, or do the equivalent actions using
setjmp/longjmp.

• Do not trust the value of errno across a boundary.

Signal handling is simple: do not even think of doing it.

It is almost impossible to describe how broken this area is, at all levels from what the
hardware provides, through POSIX, up to the language standards that ‘specify’ it. As
usual with such areas, almost everything said about it on the Web or in books is just plain
wrong, because of the pressure to say something ‘positive’.

7.1.24 IEEE 754 Facilities

Do not use the fancy IEEE 754 facilities (i.e. setting or testing the modes and flags).
These are sometimes available in Fortran 2003 and C99, and just occasionally may even
work, but are associated with system threads, not OpenMP ones. I do not recommend
using them in C99, even in serial code, because C99 got them catastrophically wrong.

There are some things that can be done reliably, but they are too complicated to be
worth describing, and few people want to.

7.1.25 Native System Threads

OpenMP implementations almost always use POSIX or Microsoft threads behind the
scenes, but OpenMP threads may not the same as those; a single system thread may be
used for several OpenMP threads, or conversely, and the binding may vary with time.

17

• Do not use system threads directly, or a library that does.

The combination may work – or may fail horribly. OpenMP may assume that it is the
only thread user. The detailed reasons are too complicated to describe here, but include
signal handling and scheduling, as well as the thread state mentioned above.

7.1.26 Compiler Bugs?

95% of ‘compiler bugs’ reported by even experienced programmers are not that at all,
and are typically user errors; subtle breaches of the language standard are perhaps the
most common. Unfortunately, that is only 90% for OpenMP, even when the OpenMP
specification is unambiguous and implementable.

In 1999, only a few Fortran compilers worked at all; none of the C compilers did, as far
as I know.

By 2006, almost all Fortran and many C/C++ ones did.

Today, even C/C++ ones work for simple use.

Note that ‘not working’ was and is quite often crashing in the compiler itself or when
executing the most trivial OpenMP code; even today, there are probably a good many
that cannot handle anything complicated. Performance is another matter entirely, and I
have not investigated it.

Unfortunately, you must locate the cause before knowing whose bug it is, even in simple
examples like the ones in the practicals for this course; I spent a day tracking one trivial one
down. Also, for the reasons given above, most bugs are not reproducible; major factors
in exposing them include more independent cores (even hyperthreading in this context),
the complexity of the code and its synchronisation, and a higher interaction rate between
threads.

• Solution: KISS!

That may not eliminate bugs, but does help to identify them, and is an essential first
step to fixing your bug or bypassing a compiler bug.

• Triple check your code against the specification.

Trivial breaches often cause extreme effects in parallel code. And, of course, follow the
guidelines given in this course.

18

