
Introduction to OpenMP

Simple SPMD etc.

Nick Maclaren

nmm1@cam.ac.uk

September 2019

Introduction to OpenMP – p. 1/??

Terminology

I am badly abusing the term SPMD – tough
The original meaning makes little sense nowadays

In this course, I mean a type of program design

Introduction to OpenMP – p. 2/??

SPMD Includes SIMD

SPMD proper is a superset of SIMD
Going to cover some of the non--SIMD aspect
• But there isn’t a rigid boundary between the two

Some SPMD features are useful for SIMD
Scheduling for irregular loops is one example

OpenMP library functions are another example
They are useful for producing good diagnostics

Introduction to OpenMP – p. 3/??

The Great Myth

Many books and Web pages say SPMD is simple

They could not be more wrong

• It is possible to use SPMD very simply

• But easy to write dangerous code by mistake
Applies to both correctness and performance

• This course describes some simple, safe rules

Introduction to OpenMP – p. 4/??

Simplest SPMD Model

At any point, one thread starts a parallel region
Each subthread runs to completion, and finishes
The serial code then carries on executing

In the simple model we are considering:

• No communication between threads
• All global data is read--only

Reductions are allowed, of course

Beyond that, there be dragons ...

Introduction to OpenMP – p. 5/??

Simple SPMD Task Structure

Introduction to OpenMP – p. 6/??

Just Do It

Don’t need anything more for SPMD programming
All you need is a plain parallel directive
Then just select on thread number in your code

• Can be tricky to adapt to different core counts
Not clever to code for precisely N threads

Trivial example is coding your own parallel DO/for
Futile, unless you cannot use DO/for
For example, if data is held in a linked list

Introduction to OpenMP – p. 7/??

Just Do It (Fortran)

REAL (KIND = KIND (0.0D0)) :: array (size)
INTEGER :: chunk , index

! This rounds the chunk size up
chunk = (size -- 1) / omp---num---threads () + 1

!$OMP PARALLEL private (index)
DO index = chunk * omp---thread---num () + 1 , &

MIN (chunk * (omp---thread---num () + 1) , size)
. . .

END DO
!$OMP END PARALLEL

Introduction to OpenMP – p. 8/??

Just Do It (C/C++)

double * array ; /* size elements */

int chunk , index ;

/* This rounds the chunk size up */

chunk = (size -- 1) / omp---num---threads () + 1 ;

#pragma omp parallel private (index)
for (index = chunk * omp---thread---num () ;

index < chunk * (omp---thread---num () + 1) &&

index < size ;

++ index) {
. . .

}

Introduction to OpenMP – p. 9/??

Basic SPMD Directive

Adding directives for SPMD is very simple

The basic one is sections, for parallel tasks
It’s a bit like a parallel SELECT CASE or switch

There are both work--sharing and combined forms
We shall use the combined form in examples

• It’s not very useful – OpenMP tasks are later
The Just Do It method is more flexible

Omitted here – see the notes

Introduction to OpenMP – p. 10/??

Fortran Example

!$OMP PARALLEL SECTIONS [clauses]
!$OMP SECTION

< code of structured block >
!$OMP SECTION

< code of structured block >
!$OMP SECTION

< code of structured block >
!$OMP END PARALLEL SECTIONS [clauses]

Each section is potentially executed in parallel

Introduction to OpenMP – p. 11/??

C/C++ Example

#pragma omp parallel sections [clauses]
#pragma omp section

< code of structured block >
#pragma omp section

< code of structured block >
#pragma omp section

< code of structured block >
#pragma omp end parallel sections [clauses]

Each section is potentially executed in parallel

Introduction to OpenMP – p. 12/??

Starting SPMD (1)

Not much more to say about the sections directive
Its clauses are the usual data environment ones

• Each section will run in a separate thread
Scheduling sections to threads is unspecified

It is permitted to have more sections than threads
Unspecified behaviour makes it very hard to tune

• Generally, use only as many sections as threads
And only as many threads as cores (or fewer)

Introduction to OpenMP – p. 13/??

Starting SPMD (2)

Not recommended for a dynamic number of threads

• Can equally well use parallel DO/for to start
Same worker function with different arguments
Or each iteration can call a separate procedure

Isn’t a rigid boundary between SIMD and SPMD
• Difference is in your approach to the problem

Skilled programmers should have no problem
Feel free to use loops if you are happy to do so

Introduction to OpenMP – p. 14/??

Library Functions (1)

The ones that obtain information are perfectly safe
You can use them almost anywhere, without problems

double omp---get---wtime (void) ;

REAL (KIND = KIND (0.0D0)) &
FUNCTION omp---get---wtime ()

The wall--clock time in seconds

omp---get---wtick – precision of time

Exactly the same syntax as omp---get---wtime

You probably won’t find it useful, but it’s there

Introduction to OpenMP – p. 15/??

Library Functions (2)

int omp---get---num---threads (void) ;

INTEGER FUNCTION OMP---GET---NUM---THREADS ()

The number of threads in the current team

int omp---get---thread---num (void) ;

INTEGER FUNCTION OMP---GET---THREAD---NUM ()

The index of the current thread

int omp---in---parallel (void) ;

LOGICAL FUNCTION OMP---IN---PARALLEL ()

True if in a parallel region, false otherwise
Usual language meanings of true and false

Introduction to OpenMP – p. 16/??

Environment Variables

For SPMD, different ones are better:

export OMP---SCHEDULE=dynamic

export OMP---DYNAMIC=true

Can also use schedule(dynamic) clause

• But, as always, they may not always be best
There’s too much that’s implementation--dependent

• OMP---NUM---THREADS used exactly as for SIMD

Introduction to OpenMP – p. 17/??

Threadprivate (1)

A global or static variable private to a thread
• Each thread has a separate copy

• Put it immediately after the variable’s declaration
It must be in the same scope as the declaration
Must occur before any references to the variable
Must have a global lifetime (static or SAVE)

• Obviously, don’t specify it for arguments!
Or other inherited variables (in any language)

Introduction to OpenMP – p. 18/??

Threadprivate (2)

• The master thread 0’s copy is permanent
It’s also accessible from serial code, with care

• Otherwise access only from its owning thread
Use all of these only within a parallel region
They may become undefined on entry and exit
Ensuring that they don’t is seriously advanced use

• Don’t put variables in data environment clauses

Introduction to OpenMP – p. 19/??

Threadprivate (3)

Most other restrictions forbid unimplementable uses
You will probably never have trouble

• Provided you do only what this course teaches
And you don’t use it together with tasks

E.g. the parallel region mustn’t call a SMP library
Threadprivate isn’t safe with nested parallelism
This minefield is described later

Introduction to OpenMP – p. 20/??

Threadprivate (Fortran)

REAL (KIND = dp) , SAVE , ALLOCATABLE :: array (: , :)
REAL (KIND = dp) , SAVE :: vector (5) , var
!$OMP THREADPRIVATE (array , vector , var)

< Allocate and use array, vector and var >

• Note no !$OMP END THREADPRIVATE

Any reasonable type and declaration is allowed

Should be in modules, initialised or use SAVE
• Don’t use with COMMON or EQUIVALENCE

Introduction to OpenMP – p. 21/??

Threadprivate (C/C++)

static double array [5] [5] , * ptr ;

static int index = 123 ;

#pragma omp threadprivate (array , index , ptr)

< Use array, index and ptr >

Any reasonable type and declaration is allowed

Should be file-- or namespace--scope or static
• extern must always use it or never use it

• Must be copyable if declared with an initialiser

Introduction to OpenMP – p. 22/??

Copyin

The copyin clause is very like firstprivate
Copies from the master thread zero to all threads

• It can be used only on threadprivate variables

• It can be used only on parallel directives

Fortran allocatable variables need 3.0

Not very useful in OpenMP subset taught here
No examples given, as used exactly like firstprivate

Introduction to OpenMP – p. 23/??

Performance

Keep it simple and you will rarely have problems
• Try to avoid having to tune SPMD code

• Keep each thread’s data as separate as possible
Remember the caching? That’s the critical aspect

• Make each parallel section fairly long
That’s in terms of execution time, not lines of code

• Try to share work equally between threads
Easy for schedule(dynamic) with high loop count

Introduction to OpenMP – p. 24/??

Tuning

This can be from simple to diabolical
It depends on how threads are scheduled
• And that’s unspecified and unpredictable

If some code is half memory-- and half CPU--limited
Performance will be bad if all of one type runs at once
And good if there is a mixture at all times

Similarly with accessing different regions of data
Very common with some classes of application

Introduction to OpenMP – p. 25/??

Problem Loops

Some loops access data in cache--hostile ways
And aren’t practical to rearrange or reorder

SIMD assumes iterations are homogeneous
Each one takes roughly the same time to complete
• Sometimes that isn’t even remotely true

Some OpenMP facilities that can help with these
Generally, avoid them unless you really need them

• Remember that each loop can be different

Introduction to OpenMP – p. 26/??

System/Kernel Scheduling

System scheduling chooses which threads to run
Often called kernel or thread scheduling

• Not controllable by the ordinary programmer
Most POSIX facilities to do it don’t actually work
Administrator does it through system configuration

• Close your eyes and hope that it works
If not, must work together with system administrator
Most techniques taught in this course are robust

Introduction to OpenMP – p. 27/??

Scheduling (1)

OpenMP scheduling distributes work between threads
• Can be used on DO/for construct only

Only form of scheduling taught in this course

schedule(static) == best default for SIMD
loops are divided into equal chunks

• Essential if logic depends on communication
This course doesn’t cover such advanced use

Introduction to OpenMP – p. 28/??

Scheduling (2)

schedule(static, size) divides into size chunks
Assigned to threads in a round robin fashion

May help with some cache conflict problems
• Try using schedule(static, 1) and see if it helps

Can also be used to expose some race conditions
If it fails, there is a bug in the data usage
I used it for that when testing my specimen answers

Introduction to OpenMP – p. 29/??

Scheduling (3)

The following pairs of loops behave similarly:

!$OMP PARALLEL DO SCHEDULE(STATIC)
DO i = omp---get---thread---num()+1, limit, &

omp---get---num---threads()

!$OMP PARALLEL DO SCHEDULE(STATIC,1)

DO i = 1, limit

#pragma omp for schedule(static)
for (i = omp---get---thread---num() ; i < limit ;

i += omp---get---num---threads()) ...

#pragma omp for schedule(static,1)

for (i = 0 ; i < limit ; ++i) ...

Introduction to OpenMP – p. 30/??

Scheduling (4)

schedule(dynamic)
Each thread takes a single iteration of the loop
As each thread finishes, it takes another iteration
Consider when iterations vary a lot in time taken

schedule(dynamic, size)
Threads take chunks of size iterations

• This might help for non--uniform loops
Don’t make the chunk size too small, though

Introduction to OpenMP – p. 31/??

Scheduling (5)

This is mentioned mainly for completeness
I advise trying it only as a last resort

schedule(guided [, size])
An adaptive algorithm, a bit too complex to describe

Size is the minimum chunk size (default 1)

If you try it, start with size omitted

Introduction to OpenMP – p. 32/??

Thread Synchronisation

Mainly ensuring some code is executed serially
• That is a restricted form of synchronisation
It is also needed for SIMD (e.g. for I /O)

Those facilities are covered in the next lecture

Thread communication is often essential
That includes between the master and a worker

• This is not really covered in this course
Some facilities are mentioned, but no more

Introduction to OpenMP – p. 33/??

	Terminology
	SPMD Includes SIMD
	The Great Myth
	Simplest SPMD Model
	Just Do It
	Just Do It (Fortran)
	Just Do It (C/C++)
	Basic SPMD Directive
	Fortran Example
	C/C++ Example
	Starting SPMD (1)
	Starting SPMD (2)
	Library Functions (1)
	Library Functions (2)
	Environment Variables
	Threadprivate (1)
	Threadprivate (2)
	Threadprivate (3)
	Threadprivate (Fortran)
	Threadprivate (C/C++)
	Copyin
	Performance
	Tuning
	Problem Loops
	System/Kernel Scheduling
	Scheduling (1)
	Scheduling (2)
	Scheduling (3)
	Scheduling (4)
	Scheduling (5)
	Thread Synchronisation

