Parallel Programming (1)

Introduction and Scripting

Nick Maclaren

February 2014

Introduction (1)

This is a single three-session course
Each session follows on from the earlier ones

Some people will drop out — not a problem
Often because they need only some of the course
It is designed to be useful even when people do that

= But please fill in a green form

Do that even if you aren’t certain

Introduction (2)

This part starts with an introduction
Running complete serial programs in parallel
And a brief overview of parallel programming

Second part is parallel programming proper
Including currently used parallel environments

Third part is on shared memory models
Currently popular, but form to use correctly

Summary of This Part

A very brief introduction to the background
All jargon used will be explained — but please ask

Using multiple copies of serial programs
More complicated structures of programs
Overview of parallel programming

Choice of parallel environment

Reasons and Design

In the Neolithic Age”
By Rudyard Kipling

Note that it is frequently misquoted on the Web
Don’t trust the Web on parallelism, either

IS a serious underestimate
And, unfortunately, a great many books are no better

Beyond the Course

Courses on MPI, OpenMP and others

There are some more references in the second half

Choosing Options

Check what other people in your field do
Not always the best, but often the safest approach

Use a reliable book or course as a guide
Reading list for computer science courses can help
But remember that many push a particular dogma

Be cautious of designing from scratch
It is extremely hard even for the best experts

(Not-)Moore’s Law

Moore’s Law is chip size goes up at per annum
Not-Moore’s Law is that clock rates do, too

Moore’s Law holds (and will for some years yet)

Not-Moore’s held until , then broke down
Clock rates are the same speed now as then

Reason is power (watts) — due to leakage
See
Figures from (2013) show the graphs remain flat

Power Consumption of CPUSs

160 -
120 -
Watts
_ This graph is
80 indicative, and
shouldn’t be
trusted very farl
40 -

1993 1996 1999 2002 2005 2008

Clock Rate of CPUs

4 -
3 —
This graph is
GHz indicative, and
5 _ shouldn’t be

frusted very farl

1993 1996 1999 2002 2005 2008

Manufacturers’ Solution

Use Moore’s Law to increase number of cores
So total performance still increases at

— typically cores

— probably cores
— perhaps cores
— heaven alone knows!

Specialist CPUs already have lots of cores

Used in areas like video, telecomms etc.

Currently irrelevant to “general” computing
except for GPUs used for HPC codes

Betore Starting

Coding is something a programmer does
System configuration is something a sysadmin does
For parallelism, they need to work together

This course is mainly for programmers
Will mention some of the general points later

You needn’t be both programmer and sysadmin
You do need to collaborate with the other

You do need to understand configuration issues
You don’t need to understand the details

Programming Environments

These are a combination of hardware and software
E.g. a cluster with MPI, a multi-core CPU with
OpenMP, an NVIDIA GPU with CUDA

There are dozens of possible combinations
Some are easier than others, some make little sense
The details matter mainly to implementors

Course is in terms of programming model
How you design and program your parallelism
Will cover most of those used in scientific applications

The Word Scheduling (1)

Unfortunately, cannot avoid using it ambiguously

First meaning is job scheduling
Assigns jobs to systems (perhaps CPUSs)
A high-level task, done by an application
Condor, GridEngine, LSF, PBS etc.

Second meaning is logical thread scheduling
Assigns logical threads to system threads
A mid-level task, done by the compiler/ library
OpenMP, CilkPlus, C++11 etc.

The Word Scheduling (2)

Third meaning is system thread scheduling
Assigns threads (kernel and user) to cores
Suspends threads to take interrupts
A low-level task, done by the kernel core

First two () controlled by the programmer

Third by the sysadmin — needs privilege

Often as part of system configuration —i.e. fixed
Thatis a area, and not covered further
Some remarks later, on affinity control

Status Report

Done a very brief introduction to the background

Now using multiple copies of serial programs

Using Many Serial Programs (1)

You do not always need to rewrite serial programs
Often you can run many copies of them in parallel
Two main methods of doing this:

Farmable problems — independent, serial tasks
E.g. Monte-Carlo or parameter space searching

Multi-component problems — interacting programs
E.g. process pipelines, Web browsers
Many commercial scientific applications are like this

Using Many Serial Programs (2)

You need to write a controlling program or script
Also called a harness or controller
Best language for this is usually Python

There Is a separate course on this:

The following is only a summary of it
With some extra information for parallelism

Basic Master-Worker

Parent application runs as controller
Manages several jobs in parallel

It creates suitable jobs and its input

Runs the jobs, and waits until they finish

Collects their output and stores/analyses it
May run further jobs, perhaps indefinitely

May start a job upon external request
May start a job any time a CPU is free

Think of Web or FTP servers, job schedulers etc.

Farmable Problems

A large number of independent, serial tasks
Think Monte-Carlo or parameter space searching
Can use almost any system, including PWF/MCS/DS

Matches about of scientific computing needs

The jobs are just ordinary, serial programs
You may need to tweak their input and output a little

Use a master/worker design, with a simple master
also known as controller or harness
It just runs separate jobs, that do the actual work

A Very Common Design

Possibly interactive program creates jobs
Sets up their input and submits them

‘Job scheduler’ runs the queued jobs
It Is a controller used for spawning processes

The jobs are serial and batch
I.e. using one CPU, and are non-interactive

Possibly interactive program checks completion
Reads their output and creates the results

Manual (Interactive?) Harness

4 N - N
Input | Input Submit
—> >
(1) harness (2) Scheduler
- J

Collect
4) JE— S - — N—— .

~ N
Output| Oufput
o

(5) harness
_) CPU farm

...

Iterative Harness

| t(N Subrmi - N
NPUl | serial ubmi
_____ - _
(1) A 2) Scheduler
harness
Collect
program)
terate| | / L S AT
6))
Output
© CPU farm

How Many Jobs?

No point in exceeding number of CPU cores
Very often use , even less than half

Many reason is limited memory performance
Limits on bandwidth, accesses per second etc.
Rarely enough to keep all cores running at full speed

Also watch out for running out of resources
E.g. memory, swap space, disk space, I/0O capacity
Can cause other programs to misbehave or fail

= Don’t try to do too much at once

Shared Systems

Anything used by other people or for running services
Includes desktops used for your own interactive work

Too many jobs can slow down other processes
Also, problems can occur with kernel scheduling
Most commonly seen with memory intensive ones

Especially with GUIs and some fancy networking
they may hang, misbehave or fail

Always allow enough resources for other work
nice will NOT usually help — despite common claims!

Choosing a Master + Scheduler

®* Best solutions are a job scheduler, Python or MPI

Not advised to use a shell, C/C++ or even Perl
It is much harder and needs much more skill

e Strongly advised not to use threading
Spawning processes looks harder but is simpler

Job Schedulers (1)

Much the best way of running CPU farms
GridEngine, Condor, LSF, PBS etc.

That is a pre-debugged controlling application
A sysadmin must install and configure them
Doing those needs privilege (i.e. root access)

Configuring them is tedious and can be tricky
For just farmable applications is usually easy
Ask for help configuring systems / job schedulers

Job Schedulers (2)

schedulers is typically much easier
Farmable jobs need only one CPU core

Usually create a script file, and submit by a command
It may start with the description of the job
Followed by the commands to execute in the job

If the job description is by command parameters
Just create another script file to use the command

Check if jobs have finished, and then look at output

Using Python (1)

Use the subprocess module and class Popen
Can be done, very easily, in a couple of dozen lines
That includes fairly thorough checking of success

Description of how to do it in:

Note that killing the master is a
At the very least, will lose output and miss checking
Job schedulers can handle that, but are complicated

Using Python (2)

If master on one system and workers on another
Popen should use the ssh command

.ssh on the worker systems should avoid passwords
I.e. set up known_hosts and authorized_keys

I.e. put your username on the master into latter

Can be problems if master system crashes
Will usually lose output, miss checking and more

And must avoid running too many jobs

Using MPI (1)

Generally advised only if you already know MPI
But may well need it for your farmable problems
It is the way to use clusters for large problems

Installing/configuring easier than for job schedulers
It is essentially trivial on a multi-core system
And you need only a hostfile for a cluster

Installing MPI rarely needs any privilege
E.g. the usual open-source versions

Using MPI (2)
Actually using it is no problem for an MPI programmer
Exercise IS trivial; IS much better:

If you start jobs using the C system function call
(EXECUTE_COMMAND_LINE in Fortran)

You must add the checking and error handling

Using it has similar constraints to using Python

Using a Shell

This is commonly done, but is
It is very hard to code reliable error handling
If you must, use bash, NOT csh/tcsh

Can spawn background processes on local system
in Unix, also erroneously called jobs
Or can use ssh etc. to run on other systems

Handle I/0 using files, pipes or named FIFOs

And remember to for failures
If you don’t notice, you will lose data

Status Report

Done using multiple copies of serial programs

Now more complicated structures of programs

Many Tasks at Once (1)

Approach is more general than just farmable
Each job may be different, with dependencies

Simple example is a streaming pipeline as in Unix
Computing use of Henry Ford’s production pipeline
Data = = JobB = Job C = =

Yes, Unix pipelines can run in parallel, automatically!

Get parallelism if all jobs are streaming
read all input first, process and then write

Many Tasks at Once (2)

Many other control structures are possible

Anywhere a complex analysis has several phases
Common in bioinformatics and many other areas

Note that you have to run them in parallel
Still a good way to design large applications
Many commercial scientific applications do that

Example of Structure

Write
Read tables
exn\/

Output J—»

ol

Import Export
data data

Running in Parallel

Objective is genuine parallel execution
Equivalent of a manager delegating tasks
The extra performance comes as a result of that

Think of how you can split into separate tasks
Key factor is must be semi-independent
But note that pipelines are not fully independent

In practice, uses natural parallelism only
The tasks are large scale components
Consider them as complete sub-applications

Control Structure

This should not have any cycles in its control flow
I.e. it should be a Directed Acyclic Graph (DAG)

Use only streaming I/O between processes
Avoid two-way communication if you can

It is possible to write correct cyclic structures
But easy to cause deadlock and livelock

Treat such problems as parallel programming
We shall discuss that in a little while

Duplex Communication (1)

E.g. process A asks process B for some data
It looks simple, but there are some foul
Also includes any use of duplex pipes, which exist

Processes A and B may block each other
So communicate only using atomic transactions

Will describe only the simplest form of these
Works using almost any communication mechanism

Duplex Communication (2)

: Process A sends a message to B

. Process B reads the complete message
: Process B sends a response to

. Process A reads the complete response

~ WD =

= Don’t overlap with any other communication
I.e. not between 1 and 4 for process
And not between 2 and 3 for process B

= Don’t interleave reading and writing
Can get deadlock in TCP/IP if you do
MPI will not deadlock, even in that case

Avoid Cyclic Structures

Read Mcmagew Write
extra extra J tables
v

o Duplex link - take care

] H} / »[ompm}.

Import - Expor’r
data data

Beyond That?

Can automate many forms of recovery from failure
As always, be careful to write fail-safe code

See your job scheduler for relevant features
Can do it in Python or MPI, but take care

Harness + serial processes is very flexible
Don’t assume you need a monolithic application

Can use different harnesses for different purposes
Changes to the jobs are typically small

Potential Problem

Job schedulers have limited job dependencies
You can implement only some control structures
E.g. unlikely to support even streaming pipelines
Will usually need Python or MPI

Which is a problem if anything crashes
You don’t want to restart from the beginning!
This may not be a problem — so it is left to later

Frequent backups save a lot of wasted time!
Applies generally, so not covered in this course

Status Report

Done more complicated structures of programs

Now overview of parallel programming

Writing Parallel Programs

Will now cover how to write parallel programs
Often by parallelising an existing serial one

Be warned: parallelism is always tricky
= Become a serial programmer

Do NOT underestimate the challenge of this
You may need to redesign some or all of the code
Usually data structure and often algorithms

Why Use Parallelism?

Most common use is doing many tasks at once
Dominates in commerce — common in academia
Often master/worker, but with communication

Main other use is for more performance
As in HPC — High Performance Computing
Probably more common in research communities

A variant is to handle larger problems
Whether limits are time or memory

Also intermediate uses — and several others, too

Parallelism Landscape

-—— e o - o o o o o O o e e Ee e e E e Ee Ee e e o

/" Pool of threads)

Complex apps
Client-server

CPU farms
Cycle stedling

Dataflow /

Other models, hybrids efc.

————————————————————————

/Gang scheduling\

HPC
(Vector systems)

OpenMP efic.
MPI etc.

-

_— - o - e e O O e O O O O e e e e e e e e

Many Tasks vs HPC

Difference between the two is critical
But it is only two sides of the same coin

Also, the distinction is weakening rapidly
Thread pool models being used for more performance
Currently, a minor use, but could be major by 2020

And other models proposed by computer scientists

Need to step back and think about objectives

Amdahl’s Law

Assume program takes time | on one core
Proportion PP of time in parallelisable code

Theoretical minimum time on I\ cores is

Cannot ever reduce the time below
Gain drops off fast above cores

Use this to decide how many cores are worth using
And whether to use SMP or clusters
And whether the project is worthwhile at all

Practical Warning

The difference between theory and practice
Is less in theory than it is in practice

® Amdahl’s Law is a theoretical limit

In practice, parallelism introduces inefficiency
Especially if the parallelism is fine-grained

Or frequent communication between threads

* Allow at least a factor of 2 for overheads
Practical lower bound more like 2* [*(1-P)

It That Isn’t Enough?

Need to parallelise serial parts of code
No point in proceeding otherwise

Often needs complete redesign of program
Removing serial dependencies from structure
Using slower, more parallelisable algorithms
Yes, doing that can be truly painful

But it’s better than completely
Need a gain of 4 to be worth effort
except for embarrassingly parallel problems
At least 8-16 if redesign is needed

Embarrassingly Parallel (1)

Some applications are naturally almost farmable
Usually, semi-independent, large tasks
Or they can easily be rewritten to become like that

One classic example is video rendering
Separate scenes are fully independent
Each frame is almost independent
And a frame can be divided into sections

Need to fix up the boundaries afterwards

Last requirement means not fully farmable
I.e. general HPC, but easy to make efficient

Embarrassingly Parallel (2)

Easy to tune, but see later warnings
Otherwise covered only incidentally in this course

Data consistency warnings are critical
People get careless if things seem to be simple

One reason most Web servers are so unreliable
Any that update data — e.g. sales sites, registrations
Especially data corruption and incorrect behaviour

Parallel database design is fiendishly hard
Programming and hoping simply does not work

Complex Applications

This is where the topology is more complex
All processes communicate directly

The communication isn’t generally too hard
The synchronisation can be a nightmare

Time spent on design is
Often need many times more than for serial code

Don’t assume better performance is automatic
Can easily get 95% parallel and 2 x slower

Status Report

Done overview of parallel programming

Now choice of parallel environment

More Performance (1)

Many forms of parallel hardware and programming
But think in terms of programming model — e.g.:

Single Instruction Multiple Data (SIMD)
E.g. a serial program operating on whole matrices
Old vector systems, GPUs, SSE/AVX etc.
Some simple OpenMP and other threading use

Distributed memory with message passing
For performance, this essentially means MPI
Currently, solution for very large problems

More Performance (2)

Partitioned Global Address Space models
Fortran coarrays, UPC etc.
A bit like an intermediate form between previous two

Separate threads with shared memory
OpenMP, CilkPlus, POSIX/Java/C++ threads etc.
OpenMP and CilkPlus also have SIMD aspects

By FAR the hardest model to use correctly
Unfortunately, look as if they are the simplest
These are the ones being touted all over the Web

More Performance (3)

Dataflow models (as in Prolog language)
Common in hardware and embedded systems
Mainly useful as program design for some problems

Other models are possible, and may become relevant
This is a very active research and development area

= Expect significant changes in the next decade
Heaven alone knows what or exactly when!
Especially true for shared-memory models

Matlab etc.

Using multiple cores is automatic — for some functions
Will be useful only if your arrays are large

May be a problem if multiple Matlab executions
Probably solutions to that, so check up if needed

A parallel toolbox for using MPI or GPUs
Costs extra, and MPI looks tricky to use

No significant local experience that I know of

Python

Python threading runs entirely serially
This is due to a restriction of its design

The multiprocessing module does run in parallel
Itis and potentially system-dependent
No experience with it, so can’t say much more

There are also interfaces to MPI
Should be easy, but be careful about data transfer

Java

Its own shared-memory threading since 1998
Not good for performance, so not really covered

= But following lectures are relevant

The problems and design apply to all threading

Choice of Environment

Often constrained by existing practice in your area
change environment without good reason
But don’t use an environment, either

Firstly, can you just run multiple serial codes?
If so, why not? Techniques were described above

Matlab, Python and Java also covered earlier

Usually need to use Fortran, C or C++
C++ usually via C and — see later lecture

Choosing MPI (1)

Leader is MPI — Message Passing Interface
Library callable from Fortran and C

Choose this if any of following:

Need to use clusters or similar HPC systems
Need more memory than one system

In 2014, means 500+ GB
Need highly portable or stable in long term

Choosing MPI (2)

Simplest environment to learn, not always to use

A 3-day course, covering all you need

Choosing OpenMP (1)

Next is OpenMP — shared-memory threading
Language extension for Fortran, C and C++

Consider this if any of following:

Want to use parallel libraries like LAPACK
Need to parallelise only small part of code
Need to parallelise existing serial code
Requirement easily mapped to SIMD model
Requirement easily mapped to tasking model

Choosing OpenMP (2)

Easy to code, but not to debug or tune
The are subtle and very nasty
Not too hard, if use in strictly disciplined manner

Be warned — OpenMP and C++ do not mix well
Parallelising C-style C++ code is OK — see course

A 2-day course, covering SIMD (perhaps tasking)

Choosing GPUs

GPUs means specific high-end graphics cards
Generally using CUDA, sometimes others

Consider this if all of following:

Need to parallelise only small part of code
That part easily mapped to SIMD model

Beyond that is possible, but really for experts only

A course is part of

Other Choices

Two look half-sane and useful, but are new
® [ortran coarrays are an alternative to MPI
® CilkPlus are an alternative to OpenMP for C++

No other threading is recommended
The possibilities and reasons are in the next lecture

Dead Environments

These were once used, but are now effectively dead
You sometimes see these in old programs
try to run unchanged — probably

PVM — Parallel Virtual Machine
Originally to use spare cycles on people’s desktops
Rewrite to use MPI

HPF — High performance Fortran
An earlier attempt to add a parallel interface
Rewrite to use OpenMP (or Fortran coarrays)

Combining Environments

Can use MPI across a cluster or HPC system
And OpenMP or GPUs within a node

Generally, it’s more effort than it justifies
But some codes can run quite a lot faster

®* Beyond that “Here be dragons”

Investigate Techniques

Don’t reinvent the wheel

Designing parallel algorithms is seriously hard
Many common problems have been solved, fairly well

There are some good, efficient parallel libraries
Especially linear algebra and matrix operations
Mainly for shared-memory based on OpenMP

Often, only the data access pattern matters
Then can adapt an algorithm with a similar pattern

Hiatus

There is too much to cover in one afternoon
We have covered parallel use of serial programs
And overview of current parallel environments

Next lecture is on parallel programming as such
Includes describing above choices in more detail
If you are likely to use them, advised to attend

If you might not attend, please:
Fill in and hand in the , today

	Introduction (1)
	Introduction (2)
	Summary of This Part
	Reasons and Design
	Beyond the Course
	Choosing Options
	(Not-)Moore's
Law
	Manufacturers' Solution
	Before Starting
	Programming Environments
	The Word Scheduling (1)
	The Word Scheduling (2)
	Status Report
	Using Many Serial Programs (1)
	Using Many Serial Programs (2)
	Basic Master-Worker
	Farmable Problems
	A Very Common Design
	How Many Jobs?
	Shared Systems
	Choosing a Master + Scheduler
	Job Schedulers (1)
	Job Schedulers (2)
	Using Python (1)
	Using Python (2)
	Using MPI (1)
	Using MPI (2)
	Using a Shell
	Status Report
	Many Tasks at Once (1)
	Many Tasks at Once (2)
	Running in Parallel
	Control Structure
	Duplex Communication (1)
	Duplex Communication (2)
	Beyond That?
	Potential Problem
	Status Report
	Writing Parallel Programs
	Why Use Parallelism?
	Many Tasks vs HPC
	Amdahl's Law
	Practical Warning
	If That Isn't Enough?
	Embarrassingly Parallel (1)
	Embarrassingly Parallel (2)
	Complex Applications
	Status Report
	More Performance (1)
	More Performance (2)
	More Performance (3)
	Matlab etc.
	Python
	Java
	Choice of Environment
	Choosing MPI (1)
	Choosing MPI (2)
	Choosing OpenMP (1)
	Choosing OpenMP (2)
	Choosing GPUs
	Other Choices
	Dead Environments
	Combining Environments
	Investigate Techniques
	Hiatus

