
Languages for Scientific Programming

Fortran, C++, Matlab, Python etc.

Nick Maclaren

nmm1@cam.ac.uk

June 2012

Why (and Why Not) to Use Fortran – p. 1/??

Domain of Interest

Fortran is used for scientific/numerical computing
And, nowadays, it is used only for such requirements

Still used for such tasks in embedded programming
Things like aircraft controllers, chemical plants

Compare with C++, Python, Matlab, S--Plus etc.
All of which are often used for scientific computing

Talk is wholly from viewpoint of scientific computing

Main languages used for this sort of computing are
Fortran, C++, Python, Matlab, S--Plus etc.

Warning: personal opinions will abound in this talk

Why (and Why Not) to Use Fortran – p. 2/??

Coverage

Will cover modern, standard Fortran and C++
Mainly the available C++03 and Fortran 2003
Mentioning latest (and greatest?) 2011 standards

Modern Fortran includes all of Fortran 77 as subset
C++ includes most of C, with some subtle differences

Versions of Python and Matlab less relevant
But essentially Python 2.6+ and Matlab 7+
For Python, will assume you also have numpy

Why (and Why Not) to Use Fortran – p. 3/??

Rationality and Irrationality

Choose a language because they already know it
Or because they are joining a group that uses it
Others need to modify an existing program written in it
Or easy to get programmers for short--term project

⇒ All are good, rational reasons

Some claim that Fortran is an obsolete language
Or that everyone should use C++, Python or whatever

⇒ Those are bad, irrational reasons

Why (and Why Not) to Use Fortran – p. 4/??

More Irrationality

Or that it’s taught in computer science courses

⇒ That is also a bad, irrational reason

Why?

Any competent developer can learn a new language
Mentally inflexible people make bad programmers

And computer scientists aren’t usually what you need
What you need is to write reliable, practical software

Why (and Why Not) to Use Fortran – p. 5/??

Other Languages

Far too many to enumerate, but mostly irrelevant
Will mention just a few, and relevance here

Let’s avoid Excel, Basic and Pascal – please!
Also computer science and experimental ones

Ada, possibly – but I haven’t looked at even Ada 95

C is a semi--portable, high--level assembler
Commonly used nowadays for system interfaces etc.

Why (and Why Not) to Use Fortran – p. 6/??

Executive Summary (1)

Any not mentioned is poor to horrible

⇒ This is from viewpoint of practical scientists
Unfair on C++ for skilled, disciplined programmers

Ease of use: Python and Matlab, then Fortran

Prototyping: Matlab, then Python, rarely others
Mainly because high--level and interpreted

Debuggability: Python, Matlab, then NAG Fortran

Why (and Why Not) to Use Fortran – p. 7/??

Executive Summary (2)

Portability: Fortran the best, by a mile
And over--elaborate C++ is by far the worst

Software engineering: Fortran best, then Python
Reasons are complicated, but several of them

Performance: Fortran or C++ (no overall difference)
Python and Matlab IF good toolbox exists
Actually programming them is always slow

Parallelism: Fortran best for shared memory
Little to choose for distributed memory

Why (and Why Not) to Use Fortran – p. 8/??

Executive Summary (3)

Array handling: Fortran best, then Matlab and Python
Less clear for sparse matrices, or unusual ones

Text handling: Python best, then C++, then Fortran
Python definitely best for regular expressions

‘Computer science’: C++, then Python and Fortran
Includes data networks (a.k.a. graph structures)

‘System interfaces’: Python, then C++, then Fortran
Includes writing multi--program applications

There’s no universally best language, nor ever will be
Why (and Why Not) to Use Fortran – p. 9/??

Matlab, Mathematica, S-Plus etc.

High--level, domain--specific packages
From 1960s in statistics and engineering domains
Usually interactive, but better ones are programmable
⇒ All are largely interpreted languages

Will describe only Matlab, but comments are general
Mathematica is for similar types of application
Genstat, S--Plus, R are for statistical programming
Most domains have at least one, often several

Octave and R are free, others need licences
Some can be expensive, especially Matlab toolboxes

Why (and Why Not) to Use Fortran – p. 10/??

Matlab

Originally a simple language for matrix arithmetic
Can now do most numerical scientific calculations

Very heavily used for scientific/numerical computing
Not very well documented or numerically robust
Quality still better than most open--source code

Matlab has lots of specialist toolboxes
Generally, you need at least some, but cost builds up
High--level (e.g. array operations) is fairly efficient

Octave is a GNU application, very Matlab--like

Why (and Why Not) to Use Fortran – p. 11/??

Matlab Benefits

Can be easier to use than the others if
• you don’t know any of the languages, or
• it or a toolbox matches your requirement, or
• you just want to do some prototyping, or
• you don’t need immense efficiency

Some of benefits with a Fortran or C++ library!
For example, NAG, Netlib, and many others
⇒ And often get better efficiency, too

Matlab always worth considering for one--off code
E.g. useful for checking results of other code!

Why (and Why Not) to Use Fortran – p. 12/??

Python

A very simple, high--level interpreted language
Started in computer science, and inclined that way
Much easier and better engineered than most
It traps most user errors, including numeric ones

Almost all of its functionality is in library modules
Huge numbers of very useful ones, as standard
Best for scripting, text munging, system interfaces
Scientific programming really needs numpy

I don’t know Ruby, but reported as Python--like
Reported to be a bit cleaner and somewhat slower

Why (and Why Not) to Use Fortran – p. 13/??

Numpy/Scipy

numpy is extensions for scientific programming
Also provides facilities to help calling Fortran
scipy goes a lot further – a bit like Matlab

numpy less conventional than Fortran or Matlab
Not much harder to use than Matlab, but different
Documentation is confusing, though better than C++

Code used to be very poor, but seems better now
Unclear whether numerically robust or how reliable
High--level (e.g. array operations) is fairly efficient

Why (and Why Not) to Use Fortran – p. 14/??

Python Benefits

⇒ Essentially the same as Matlab!

Big difference is if you do a lot of non--numeric coding
Then it’s much easier to use Python instead

Reminder: often easier if
• you don’t know any of the languages, or
• a module matches your requirement, or
• you just want to do some prototyping, or
• you don’t need immense efficiency

Python always worth considering for one--off code

Why (and Why Not) to Use Fortran – p. 15/??

C++

Originally to move C programmers to a higher level
Designed for functionality more than error prevention
Not really very good for scientific programming

Language is very complicated, and hard to learn well
Most people follow recipes – often different ones

Still has C’s ‘‘high--level assembler’’ principles
Significant advantages and serious disadvantages

⇒ You can do almost anything you want to
You can bypass all checking if you try, just as in C

Why (and Why Not) to Use Fortran – p. 16/??

C++ Standard Library

Real problems are with library, because of design
Its specification and diagnostics are often baffling
Templates are C are compile--time polymorphism
But very unconstrained – mistakes cause chaos

Standard library is large, but not all that powerful
E.g. 4 classes for vectors; none for n--D arrays
Often have to extend library classes, unnecessarily
Use LAPACK, FFTW, MPI etc. just as for Fortran

Almost all C++ uses an extra major class library
Current dogma is you should always do this

Why (and Why Not) to Use Fortran – p. 17/??

Some Class Libraries

• Boost is a library that provides a lot of classes
Fair checking, but little scientific programming
• CERN ROOT has a hotch--potch of scientific tools
Documentation is both inadequate and erroneous
• CGAL is for computational geometry
And so on ...

Often very complicated and idiosyncratic
On most desktop systems, but highly non--portable

Can be nasty for HPC or in long term
OK if they do what you want – but choose carefully

Why (and Why Not) to Use Fortran – p. 18/??

C++ Benefits

Can be easier to use than the others if
• you need your own data structures, or
• you need assembler level coding, or
• there is a suitable library, or
• you need high efficiency, or
• you need to mix in a lot of C

⇒ Main reason is that people think they know it

Can do the same with Fortran, but more tediously
I can’t recommend C++ as a first serious language
Much harder to learn well – though not than C!

Why (and Why Not) to Use Fortran – p. 19/??

Fortran

One of 3 remaining original high--level languages
Very strange to people used to C--derived languages

Fortran 90 much higher--level and more modern
Older code still works (even most of Fortran 66)

Standard is about 1/3 size of C++ and much simpler
Standard much most explicit and least ambiguous

⇒ Comparable in power to C++ – just very different

Don’t design Fortran and C++ applications same way

Why (and Why Not) to Use Fortran – p. 20/??

Fortran Benefits

Can be easier to use than the others if
• you need to code in parallel, or
• you need serious portability, or
• you are using matrices, or
• you need high efficiency

Can do matrices with Matlab and Python
But operations on elements very slow if using them
C++ depends on library and what you need to do

I teach Fortran scientific programming in 3 days
Not everything, but all many/most programmers need

Why (and Why Not) to Use Fortran – p. 21/??

Running out of Time

Will just skim through various areas
Would be only half--way through if not!

• Low--level numeric coding not a problem
Specialist libraries easiest from Fortran and C++

Why (and Why Not) to Use Fortran – p. 22/??

Software Engineering

• Fortran has by far the best specification
Largely explicit, complete and unambiguous
Needed for portability, reliability and debuggability
⇒ Testing tells you only what this compiler does

• Fortran and Python both have modules
Collect related data, functions and interfaces together
A key feature for good software engineering

• Python and C++ have exceptions, in theory
Mainly useful for resource recovery and similar
Matlab’s are undefined and Fortran has none

Why (and Why Not) to Use Fortran – p. 23/??

Error Detection

• Static error detection only in Fortran and C++
The C++ library is the main problematic area
Python or Matlab are dynamically checked

• Dynamic error detection is main problem
Python and NAG Fortran are good, then Matlab
Most Fortrans and all C++s are poor or bad
Some C++ libraries trap most of the simple errors

• Python and Matlab catch all ‘SIGSEGVs’
NAG Fortran traps about as much as those two
In Python and Matlab some become logic errors

Why (and Why Not) to Use Fortran – p. 24/??

Optimisation/Efficiency

• Similar when using high--level libraries/modules
At low--level, C++ and Fortran much faster

• Fortran is much more optimisable than C++
C++ must inline across multiple files
Most libraries do it by fiendishly complex templates
Serious problem for portability and reliability

• For most array--based programs, Fortran is fastest
For pointer--based or character, usually C++
Difference usually marginal – may need recoding

Why (and Why Not) to Use Fortran – p. 25/??

Parallelism (1)

• For shared memory, easiest to call SMP library
Possible in all of them, for some algorithms
If you need to code your own, answer is Fortran

• For GPUs, the situation is very murky
There are modules for Python and Matlab
Or can program using CUDA or OpenAcc
From all of C++, Fortran and Python

No time to describe threading – but not advised
Data races cause rare, unrepeatable wrong answers
Scientific programs often suffer very badly from this

Why (and Why Not) to Use Fortran – p. 26/??

Parallelism (2)

• For distributed memory, usually call MPI

Possible in all, easiest in Fortran and C++

• Fortran 2008 has coarrays – a PGAS model
Will they take off? Your guess is as good as mine

• Python 2.6 introduced the multiprocessor module
It’s a bit like MPI, but with a different objective

Why (and Why Not) to Use Fortran – p. 27/??

Data Structures

• For arrays, Fortran then Matlab and numpy
numpy arrays as good as Matlab, but different
For sparse or non--rectangular, Matlab may be best

• All have simple structures – with Matlab weakest

• C++ and Python have lists (a.k.a. chains)
All except Fortran have maps (a.k.a. directories)
Anything else needs pointers – can be a bit tedious

Why (and Why Not) to Use Fortran – p. 28/??

Pointers

C++ pointers are very low level and dangerous
Fortran’s are very different and higher level
Python’s are implicit (in use counts of references)
Matlab is similar, but very unlike normal pointers

Comparing their pointer support is like comparing
apples, blackberries, bananas and acorns ...

Coding pointer--based algorithms easiest in C++
Doing that is tedious but easy in Fortran
⇒ I really cannot recommend Matlab for them

Why (and Why Not) to Use Fortran – p. 29/??

Classes, Object Orientation etc.

• Not much to choose – basic to C++ and Python
But Fortran 2003 and Matlab have them, too
Matlab least flexible, but adequate

• Claim that O--O is always better is pure dogma
Not heavily used or wanted in scientific programming
Little sense for most matrix algebra, for example

• Polymorphism basic to Python and easy
Next easiest in Fortran, but patchily implemented
Heavily used in C++, but with quite a lot of gotchas
Not really relevant to Matlab, or available

Why (and Why Not) to Use Fortran – p. 30/??

Calling Fortran 77, C etc.

• Little problem from C++ or Fortran
C mistakes in Python and Matlab are evil

• Complicated data structures are for experts only
Also mixing Python, Matlab, real C++, real Fortran 90

• System interfaces are nowadays defined in C
Python has most as standard library modules
Other languages call C, but usually not a problem
Risk of conflict with run--time system or parallelism

⇒ But here be dragons!

Why (and Why Not) to Use Fortran – p. 31/??

I/O Facilities

• All truly horrible, but Matlab is worst
Defects wildly different, often misunderstood
Often use another language to do data conversion
Python best for munging text data

• Fortran and C++ I /O are like chalk and cheese
C’s I /O seems easy, but is solid with gotchas
Fortran still very restrictive for free--format input
And pretty well every detail is like that

• I /O error detection best in Python and Fortran
C++ is worst, because it inherits so much from C

Why (and Why Not) to Use Fortran – p. 32/??

Numeric Coding and Libraries

Not where the problems arise – but see later for errors

All usual mathematical functions now work fairly well
Probably most in Matlab, but that’s not the point
Usually need to call a field--specific separate library

Libraries usually written in Fortran 77 or C
Not necessarily the one you are programming in
Easiest to call from Fortran and C++ – see later

Why (and Why Not) to Use Fortran – p. 33/??

Quality of Specification

Best if explicit, complete and unambiguous
Needed for portability, reliability and debuggability

Easy to make assumptions that are not safe
Or for implementations to differ – or even just releases
Running tests just tells you about that version

⇒ Fortran is by far the best

Matlab and Python are really just users’ guides
C++ standard is confusing and often ambiguous

Why (and Why Not) to Use Fortran – p. 34/??

Modules

This is the way to do high--level encapsulation
Collect related data, functions and interfaces together
⇒ A key feature for good software engineering

Fortran and Python are the only ones with them
First has better checking, and latter is more flexible

C++ doesn’t have them, and probably won’t
Headers need discipline and provide no checking

Matlab has almost nothing for its users

Why (and Why Not) to Use Fortran – p. 35/??

Static Error Detection

Modern Fortran is slightly better than C++
Because more in the language and less in the library
And because C++ is so much more complicated

The C++ library is the most problematic area
The diagnostics are often incomprehensible or worse

⇒ But, overall, it’s only a minor advantage

There is essentially none in either Python or Matlab
Because they are dynamically typed and interpreted

Why (and Why Not) to Use Fortran – p. 36/??

Dynamic Error Detection

Python and NAG Fortran are good, then Matlab
Silverfrost and Lahey Fortrans good, but stagnant
Most Fortrans and all C++s are poor or bad
Even Python and Matlab don’t catch logic errors

Only partly a fundamental property of the languages
Even C++ compilers could trap many errors, in theory
But compilers omit error detection for performance

Some C++ libraries trap most of the simple errors
⇒ But only ones that are easily checkable
E.g. Microsoft C++ and Boost, perhaps others

Why (and Why Not) to Use Fortran – p. 37/??

Bounds Errors, Bad Pointers etc.

Python and Matlab block almost all of them
Some change into logic errors (e.g. orphan objects)

Heaven help you if any don’t get trapped – total chaos
Usually bombs out, much later and somewhere else
A major problem when using the C interfaces

NAG Fortran traps and diagnoses all of them
Other compilers trap a few of the most obvious

C++ standard actually forbids thorough checking
It’s complicated, but due to C inheritance

Why (and Why Not) to Use Fortran – p. 38/??

Exception Handling

Python and C++ have exceptions, in theory
Matlab’s has effectively undefined semantics
Fortran doesn’t have any – so that’s easy

Main Python and C++ use is for resource recovery
And predictable exceptions where they occur

• Rapidly trickier and more ill--defined beyond that
C++ library defines it only for unlikely errors
Little use with complicated data structures

⇒ This is a fundamentally hard problem

Why (and Why Not) to Use Fortran – p. 39/??

Optimisation/Efficiency

Similar when using high--level libraries/modules
At low--level, C++ and Fortran much faster
No systematic difference between those two

Fortran is much more optimisable than C++
C++ must inline across multiple files
Most libraries do it by fiendishly complex templates
Serious problem for portability and reliability

For most array--based programs, Fortran is fastest
For pointer--based or character, usually C++
Difference usually marginal – may need recoding

Why (and Why Not) to Use Fortran – p. 40/??

Shared-memory Parallelism

Easiest to use SMP library (e.g. NAG SMP)
Matlab has some toolboxes that might do the job
Own code in Python or Matlab is total non--starter

If you want to use OpenMP, the answer is Fortran
E.g. Intel ifort autoparallelises – icc doesn’t
Serious model conflict between OpenMP and C++

No time to describe threading – but not advised
Data races cause rare, unrepeatable wrong answers
Scientific programs often suffer very badly from this

Why (and Why Not) to Use Fortran – p. 41/??

GPUs

⇒ Don’t believe the hype you hear
Very good for some uses, useless for many others
Never easy to program, in any language
Will change radically (or disappear?) over 5–10 years

There are modules for Python and Matlab
If they do what you want, and work effectively, fine

Or can program using CUDA or OpenAcc
From all of C++, Fortran and Python
⇒ Non--trivially, using forms of the C interfaces

Why (and Why Not) to Use Fortran – p. 42/??

Python Parallelism

Basic thread facility is entirely serial
Just for multiple blocking system calls (e.g. I /O)
Needing those is usually a sign of poor design

Python 2.6 introduced the multiprocessor module
Explicit threading but across separate processes
I haven’t looked at it in detail, but am a bit doubtful

Its restrictions have very unobvious consequences
⇒ Probably OK for loosely--coupled codes
It’s a bit like MPI, but with a different objective

Why (and Why Not) to Use Fortran – p. 43/??

Distributed Memory Parallelism

Currently this means MPI, and there isn’t a problem
It’s trivial and equivalent in Fortran and C++
Matlab has a toolbox, and Python modules exist

Fortran 2008 has coarrays – already supported
Currently at least Cray, Intel, IBM, g95 (sort--of)
PGAS (Partitioned Global Array Storage) model
It’s a subclass of virtual shared--memory designs

Will they take off? Your guess is as good as mine
gfortran doesn’t have them yet, and won’t soon

Why (and Why Not) to Use Fortran – p. 44/??

Arrays

Fortran leads, followed by Matlab and numpy

Fortran has very good n--D rectangular arrays
Even sections are easy, efficient and flexible
Matlab is OK, but mainly for matrices (i.e. 2--D)

C++ and Python have only vectors (i.e. 1--D)
numpy arrays as good as Matlab, but different
All (?) C++ libraries are painful and restrictive

Sparse or non--rectangular ones are a problem
Matlab and some C++ libraries may be best

Why (and Why Not) to Use Fortran – p. 45/??

Structures etc.

All have structures – very little to choose
Fortran’s access control is probably best
Matlab has least flexible access control

Fortran’s syntax is a bit ungainly, but easy to use
And can do a few things that the others can’t ...
But so can Python and C++ ...

Why (and Why Not) to Use Fortran – p. 46/??

Lists, Maps, Graphs etc.

Most of the computer science data structures

Fortran has nothing built--in, so have to code your own
Using derived types and pointers – a bit tedious

All others have maps (a.k.a. directories)
C++ and Python have lists (a.k.a. chains)
None has support for networks, DAGs etc.

OK, IF do the job, no better than Fortran otherwise

Why (and Why Not) to Use Fortran – p. 47/??

Pointers

C++ pointers are very low level and dangerous
Fortran’s are very different and higher level
Python’s are implicit (in use counts of references)
Matlab is similar, but very unlike normal pointers

Comparing their pointer support is like comparing
apples, blackberries, bananas and acorns ...

Coding pointer--based algorithms easiest in C++
Doing that is tedious but easy in Fortran
⇒ I really cannot recommend Matlab for them

Why (and Why Not) to Use Fortran – p. 48/??

Classes (i.e. User Types)

Also very important for software engineering
Not actually the same concept as object orientation

Not much to choose – basic to C++ and Python
But Fortran 2003 and Matlab have them, too

Defining operators etc. is very much trickier
Only Fortran allows completely new operators
Matlab least flexible, but adequate

Why (and Why Not) to Use Fortran – p. 49/??

Object Orientation

It’s fundamental to the design of C++ and Python
But Fortran 2003 and Matlab have it, too
Less convenient, but Fortran has everything needed

Claim that it is always better is pure dogma
It is best for naturally object--oriented problems
I.e. where there is a clear ‘owning object’

Not heavily used or wanted in scientific programming
Little sense for most matrix algebra, for example

Why (and Why Not) to Use Fortran – p. 50/??

Polymorphism

I.e. writing generic code to handle different types
Includes handling types with property parameters

Almost unavoidable in Python, and usually easy
Next easiest in Fortran, but patchily implemented
Heavily used in C++, but with quite a lot of gotchas

Not really relevant to Matlab, or available

Why (and Why Not) to Use Fortran – p. 51/??

Calling C and Fortran 77

Calling C easiest from C++, then Fortran
Watch out for semantic differences in both cases

Calling Fortran 77 is the converse (surprise!)
Very simple calls OK in Python and Matlab

C mistakes in Python and Matlab are evil
Chaotic failure much later – possibly even on exit
Getting Python’s use counts wrong often does that

Not too hard for (say) mathematical functions
Handling complicated data structures is expert--only
Also mixing Python, Matlab, real C++, real Fortran 90

Why (and Why Not) to Use Fortran – p. 52/??

System Interfaces etc.

System interfaces are nowadays defined in C
C also used for very low--level bit--twiddling

Python has most as standard library modules
Most of the ones I have used seem to work, too

Other languages call C, but usually not a problem
Risk of conflict with run--time system or parallelism
Relatively low for serial C++ or Fortran

⇒ But here be dragons!

Why (and Why Not) to Use Fortran – p. 53/??

I/O Facilities

Aargh!

They are all truly horrible, but Matlab is worst
All defects wildly different, often misunderstood

Python much the best for sequential text files
Use for munging data in or out of other languages
Otherwise, good if a module exists, poor otherwise

Matlab can import or export many other data formats
Use another program to convert anything else

Why (and Why Not) to Use Fortran – p. 54/??

Fortran and C++ I/O

Fortran and C++ I /O are like chalk and cheese
Entirely separate ancestries since the mid--1950s
Can do almost anything in either, often painfully

C++’s formatting is painful, so most people use C’s
C’s I /O seems easy, but is solid with gotchas
E.g. in non--trivial positioning or when using pipes

Fortran 77 was very restrictive but Fortran 2003 isn’t
E.g. has a STREAM file type for C binary files
Fortran still very restrictive for free--format input
Best to use a Python preprocessor or call C

Why (and Why Not) to Use Fortran – p. 55/??

I/O Error Handling

I /O error detection best in Python and Fortran
C++ is worst, because it inherits so much from C
And the C approach is to just set a flag and continue

⇒ In fact, it is much worse than that

Standard often unimplementable – with no flag option
Can reset and continue after irrecoverable failure

Fortran says nothing, so compilers may do better
But nowadays implemented using C, so often don’t

Why (and Why Not) to Use Fortran – p. 56/??

	Domain of Interest
	Coverage
	Rationality and Irrationality
	More Irrationality
	Other Languages
	Executive Summary (1)
	Executive Summary (2)
	Executive Summary (3)
	Matlab, Mathematica, S-Plus etc.
	Matlab
	Matlab Benefits
	Python
	Numpy/Scipy
	Python Benefits
	C++
	C++ Standard Library
	Some Class Libraries
	C++ Benefits
	Fortran
	Fortran Benefits
	Running out of Time
	Software Engineering
	Error Detection
	Optimisation/Efficiency
	Parallelism (1)
	Parallelism (2)
	Data Structures
	Pointers
	Classes, Object Orientation etc.
	Calling Fortran 77, C etc.
	I/O Facilities
	Numeric Coding and Libraries
	Quality of Specification
	Modules
	Static Error Detection
	Dynamic Error Detection
	Bounds Errors, Bad Pointers etc.
	Exception Handling
	Optimisation/Efficiency
	Shared-memory Parallelism
	GPUs
	Python Parallelism
	Distributed Memory Parallelism
	Arrays
	Structures etc.
	Lists, Maps, Graphs etc.
	Pointers
	Classes (i.e. User Types)
	Object Orientation
	Polymorphism
	Calling C and Fortran 77
	System Interfaces etc.
	I/O Facilities
	Fortran and C++ I/O
	I/O Error Handling

