
Part VI

The compilation process

Philip Blakely (LSC) C++ Introduction 169 / 385

Global variables

Outline

22 Global variables

23 The pre-processor

24 Larger projects

Philip Blakely (LSC) C++ Introduction 170 / 385

Global variables

Global variables

It is possible to declare (and set) variables outside of any function

They are then globally available

int a = 3;

void setA(int x){
a = x;

}

int main(void){
std::cout << "a = " << a << std::endl;
setA(8);
std::cout << "a = " << a << std::endl;

}

will output a = 3 and a = 8.

Philip Blakely (LSC) C++ Introduction 171 / 385

Global variables

Global variables ctd

In the above, a is a global variable.

In any function, the same value is available for read/write access

Global variables can be dangerous, because it is usually not
obvious simply from a function’s prototype whether it alters global
variables

It can then be hard to debug a function if it may have effects
outside of those suggested by its parameters and return value

Using global variables for anything other than constant variables is
usually a bad idea (or suggests bad design)

You could legitimately use them for storing user-input simulation
parameters, such as the end-time for a simulation.

Philip Blakely (LSC) C++ Introduction 172 / 385

The pre-processor

Outline

22 Global variables

23 The pre-processor

24 Larger projects

Philip Blakely (LSC) C++ Introduction 173 / 385

The pre-processor

Pre-processor

The first step of compilation is pre-processing

Basic text/file processing (very simple, very powerful, very
dangerous)

We’ve already seen one pre-processing command:
#include <iostream>

includes the contents of the C++ file iostream in the current file

The compiler can only really deal with one file at a time, so use
#include to include pre-defined function prototypes in your code.

Other files, including your own, can be included here, by #include

"MyFunctionDefns.H"

#include "MyIncludeFile.H" is used for your own header files,
#include <iostream> is used for system/library header files.

Note that the pre-processor always starts from the top of a file and
works downwards

Philip Blakely (LSC) C++ Introduction 174 / 385

The pre-processor

Pre-processing #define

#define PI 3.1415926535

defines the symbol PI.

Throughout the remaining code, PI is replaced by the exact string
given

This only happens when PI is a separate “token”
i.e. not part of a variable/type name and separated from other
tokens by white-space or an operator.

#define PI 3.1415926535
double circleArea(double r){

return PI*r*r;
}

int main(void){
int PIN;
double r = 2;
std::cout << "PI*rˆ2 = " << circleArea(r) << std::endl;

}

Philip Blakely (LSC) C++ Introduction 175 / 385

The pre-processor

After pre-processing

After pre-processing, the previous code gives:

double circleArea(double r){
return 3.1415926535*r*r;

}

This is exactly what the compiler sees.

No variable “PI” is defined or allocated.

The pre-processor knows (virtually) nothing about C++, so it can
easily give strange behaviour

Philip Blakely (LSC) C++ Introduction 176 / 385

The pre-processor

Optional compilation

It is also possible to have conditional compilation

This is quite useful for switching between blocks of code at
compile time.

or for disabling computationally expensive checks when compiling
optimized.

#define DEBUG
// Code here
#ifdef DEBUG
std::cout << "Current value of x is " << x << std::endl;
#endif

#if 0
// Old code...

#else
// New code... (hopefully equivalent to previous)

#endif

and you can easily change #if 0 to #if 1 to switch between
code-blocks.
Philip Blakely (LSC) C++ Introduction 177 / 385

The pre-processor

Optional compilation ctd

Similarly, you can use

#ifndef FAST CODE
// Simple, but slow code
#else
// Possibly less clear, but faster code.
#endif

and this can be enabled/disabled at compile-time by adding the
option -DFAST CODE

The compiler will define the pre-processing symbol FAST CODE.

Equivalently, you can use: #if ! defined(FAST CODE)

Philip Blakely (LSC) C++ Introduction 178 / 385

The pre-processor

Compile-time errors

The pre-processor can also be used to trigger compile-time errors:

#if DIMN == 1
// Code for 1D here
#elif DIMN == 2
// Code for 2D here
#else
#error Code only implemented for DIMN = 1, 2
#endif

If DIMN == 3 when compiling, then the compiler will abort and
display the error message above.

Similarly #warning will cause the compiler to print just a warning,
which will stand out because of course your code compiles without
any other warnings.

Philip Blakely (LSC) C++ Introduction 179 / 385

The pre-processor

Macros

Pre-processing macros can take arguments:

#define DEBUG(x) std::cout << #x << " = " << x << " at line "
<< LINE << std::endl

int myVar;
// Complex code
DEBUG(myVar)
// More complex code

will produce output “myVar = 42 at line 723”.

#x forms a string from a macro parameter

LINE is the current line-number

FILE is the current filename

Note that there is no space after DEBUG. Putting one here would define
a macro starting with (x) rather than a macro taking a parameter x.

Philip Blakely (LSC) C++ Introduction 180 / 385

The pre-processor

Dangers of macros

Macros do simple text-replacement, so can be very dangerous:

#define SQUARE(a) a*a
int b = SQUARE(c+3);

expands to

int b = c+3*c+3;

which is wrong.

Furthermore:

#define SQUARE(a) (a)*(a)
int b = SQUARE(c++);

expands to (c++)*(c++) which will increment c twice, rather than
the once that was hoped for.

In short, macros are very dangerous, and should not be used,
unless you really know what you are doing.

Philip Blakely (LSC) C++ Introduction 181 / 385

The pre-processor

Assertions

When programming, we often make assumptions that certain
conditions hold at, for example, the beginning of a function

For example, that an array index is not out of bounds, that a
pointer is not nullptr, etc.

In theory, if coded correctly, such conditions should never arise

However, if they do, they can cause odd side-effects and produce
errors apparently unconnected with the original error

To check for such errors, you can use assert to ensure that
required conditions hold:

#include <assert.h>

double f(int a){
assert(a > 5);
return sqrt(a − 5);

}

If a <= 5 on entry to the function, the program will abort.

Philip Blakely (LSC) C++ Introduction 182 / 385

Larger projects

Outline

22 Global variables

23 The pre-processor

24 Larger projects

Philip Blakely (LSC) C++ Introduction 183 / 385

Larger projects

Project organization

When developing a large project, it is very useful to divide up
functions into groups, depending on their intended use

So, for a given group of functions, might have
IdealGas.H containing function prototypes and
IdealGas.C containing function definitions.

A separate group of functions in Simulation.C that need to know
about those defined in IdealGas.C, just needs to #include

"IdealGas.H"

So, Simulation.C knows all about the functions from IdealGas.C.

But, functions in Simulation.C need to be able to call functions
in IdealGas.C

How do we link the two files together?

Philip Blakely (LSC) C++ Introduction 184 / 385

Larger projects

Linking

Suppose we have the following:
MyFunc.H:

int doubleIt(int);

MyFunc.C:

#include "MyFunc.H"
int doubleIt(int x){
return 2*x;

}

Main.C:

#include <iostream>
#include "MyFunc.H"

int main(void){
std::cout <<
doubleIt(5) <<
std::endl;

return 0;
}

Philip Blakely (LSC) C++ Introduction 185 / 385

Larger projects

Linking

First compile object files:

g++ -c MyFunc.C -o MyFunc.o

g++ -c Main.C -o Main.o

(-c means to produce an object file)

The object files contain the definitions of the functions.

Then link these object files into a final executable:

g++ Main.o MyFunc.o -o myProg

The final command links the files together; the linker tries to find
all functions that are referenced in each file, but whose definitions
do not occur in that file.

If some functions are not found at this stage, then a linker error
results.

Philip Blakely (LSC) C++ Introduction 186 / 385

Larger projects

Linking error

If we omit one of the object files, we get a linker error:

g++ Main.o -o MyProgram

Main.o: In function ‘main’:

Main.C:(.text+0xa): undefined reference to ‘doubleIt(int)’

collect2: ld returned 1 exit status

If we had created a function with the same name and arguments in two
separate object files, we might get a different linker error:

MyFunc2.o: In function ‘doubleIt(int)’:

MyFunc2.C:(.text+0x0): multiple definition of ‘doubleIt(int)’

MyFunc.o:MyFunc.C:(.text+0x0): first defined here

Philip Blakely (LSC) C++ Introduction 187 / 385

Larger projects

Multiple include files

For large projects, there will be many include files, with complex
interdependencies.

However, it is an error in C++ to define classes or functions more
than once.

It is possible that multiple header files will try to include the same
header file themselves.

For example,
MyIncludeFile 1.H:

#include <vector>

MyIncludeFile 2.H:

#include <vector>
#include "MyIncludeFile 1.H"

could cause problems if vector defined some functions/classes.

Philip Blakely (LSC) C++ Introduction 188 / 385

Larger projects

Include guards

However, looking at vector reveals the following:

#ifndef GLIBCXX VECTOR
#define GLIBCXX VECTOR 1
// ... Code goes here ...
#endif /* GLIBCXX VECTOR */

This will prevent the code in between the “include-guards” from being
included more than once.

Philip Blakely (LSC) C++ Introduction 189 / 385

Larger projects

Extern

To allow global variables to be seen in all source-files, we can use:

extern int a;

This can be put in a header file in the same way as a function
prototype

As long as the variable is defined in exactly one file:

int a = 77;

the linker will not raise an error.

Remember that global variables are usually evil, and making them
available in multiple source-files is usually worse.

Philip Blakely (LSC) C++ Introduction 190 / 385

Larger projects

Libraries

As with any major programming language, there are libraries of
functions written by various developers. Examples are:

BLAS - Optimized Vector/Matrix operations

Boost - Advanced C++ utilities

These usually come in the form of various include files (.h,.hpp, or
.H), which contain function prototypes which must be included in any
source-file that uses them, and library files .so

Philip Blakely (LSC) C++ Introduction 191 / 385

Larger projects

Linking to system libraries

In order to link to system libraries, do the following:

g++ Main.o MyFunc.o -o MyProgram -lblas

to link in the library in /usr/lib/libblas.so.
To link in a library not in a system directory, use:

g++ Main.o MyFunc.o -o MyProgram -L/opt/blas/lib -lblas

if /opt/blas/lib contains libblas.so

Note: the .so extension stands for “shared-object”.

Philip Blakely (LSC) C++ Introduction 192 / 385

Larger projects

Compiler options (gcc)

Other possible compiler options are:

-O1, -O2, -O3 levels of optimization
-O2 is usually sufficient, although -O3 may be necessary for
inter-procedural optimization, but could bloat/slow your code.

-g Compile with debugging symbols (which associate
variables/functions with machine-code to help a debugger).

-I<path> Specify directory in which to look for include files.

-ansi Turn off implementation specific features not in the
C++ standard.

-Wall Turn on compiler warnings

-Werror Make warnings into errors (i.e. fail to compile)

-pedantic Issue all warnings mandated by the standard

-o filename Output to this file

Philip Blakely (LSC) C++ Introduction 193 / 385

Larger projects

Other compilers

The compiler flags listed in this section are for gcc

Other compilers use similar options for include directories,
libraries, and simple optimization

Differences occur for more advanced optimization options, warning
specifications, standard compatibility, etc.

Read your compiler’s documentation to find out more.

Philip Blakely (LSC) C++ Introduction 194 / 385

