Part VI

The compilation process

Philip Blakely (LSC) C++ Introduction 169 /385

Global variables

Outline

€ Global variables

Philip Blakely (LSC) C++ Introduction 170 /385

Global variables

Global variables

e It is possible to declare (and set) variables outside of any function

@ They are then globally available

int a = 3;

void setA(int x){
a = x;
}

int main(void){
std::cout << "a = " <K a << std::endl;
setA (8);

std::cout << "a = " << a << std::endl;
}

o will output a = 3 and a = 8.

Philip Blakely (LSC) C++ Introduction

171 /385

Global variables

Global variables ctd

In the above, a is a global variable.

In any function, the same value is available for read/write access

Global variables can be dangerous, because it is usually not
obvious simply from a function’s prototype whether it alters global
variables

@ It can then be hard to debug a function if it may have effects
outside of those suggested by its parameters and return value

Using global variables for anything other than constant variables is
usually a bad idea (or suggests bad design)

You could legitimately use them for storing user-input simulation
parameters, such as the end-time for a simulation.

Philip Blakely (LSC) C++ Introduction 172 /385

The pre-processor

Outline

€@ The pre-processor

Philip Blakely (LSC) C++ Introduction 173 /385

The pre-processor

Pre-processor

The first step of compilation is pre-processing

Basic text/file processing (very simple, very powerful, very
dangerous)

e We've already seen one pre-processing command:

#include <iostream>

includes the contents of the C++ file iostream in the current file

The compiler can only really deal with one file at a time, so use
#include to include pre-defined function prototypes in your code.

@ Other files, including your own, can be included here, by #include
"MyFunctionDefns.H"
@ #include "MyIncludeFile.H" is used for your own header files,

#include <iostream> is used for system/library header files.

@ Note that the pre-processor always starts from the top of a file and
works downwards

Philip Blakely (LSC) C++ Introduction 174 /385

The pre-processor

Pre-processing #define

@ #define PI 3.1415926535
defines the symbol PI.

@ Throughout the remaining code, PI is replaced by the exact string
given

@ This only happens when PI is a separate “token”
i.e. not part of a variable/type name and separated from other
tokens by white-space or an operator.

#define PI 3.1415926535

double circleArea(double r){
return PIxrxr;

}

int main(void){
int PIN;
double r = 2;
std::cout << "PIxr"2 = " << circleArea(r) << std::endl;

}

Philip Blakely (LSC) C++ Introduction 175 /385

The pre-processor

After pre-processing

After pre-processing, the previous code gives:

double circleArea (double r){
return 3.1415926535xr*r;

}
This is exactly what the compiler sees.
No variable “PI” is defined or allocated.

The pre-processor knows (virtually) nothing about C++, so it can
easily give strange behaviour

Philip Blakely (LSC) C++ Introduction 176 /385

The pre-processor

Optional compilation

o It is also possible to have conditional compilation

@ This is quite useful for switching between blocks of code at
compile time.

@ or for disabling computationally expensive checks when compiling
optimized.

#define DEBUG

// Code here

#ifdef DEBUG

std::cout << "Current value of x is " << x << std::endl;
fendif

#1f 0

// 0ld code. ..
#else

// New code... (hopefully equivalent to previous)
#endif

and you can easily change #if 0 to #if 1 to switch between
code-blocks.

Philip Blakely (LSC) C++ Introduction 177 /385

The pre-processor

Optional compilation ctd

Similarly, you can use

#ifndef FAST_CODE

// Simple, but slow code

felse

// Possibly less clear, but faster code.
#endif

e and this can be enabled/disabled at compile-time by adding the
option ~DFAST_CODE

The compiler will define the pre-processing symbol FAST_CODE.
Equivalently, you can use: #if ! defined(FAST_CODE)

Philip Blakely (LSC) C++ Introduction 178 /385

The pre-processor

Compile-time errors

@ The pre-processor can also be used to trigger compile-time errors:

#if DIMN == 1

// Code for 1D here

#elif DIMN == 2

// Code for 2D here

felse

#error Code only implemented for DIMN = 1, 2
fendif

o If DIMN == 3 when compiling, then the compiler will abort and
display the error message above.

o Similarly #warning will cause the compiler to print just a warning,
which will stand out because of course your code compiles without
any other warnings.

Philip Blakely (LSC) C++ Introduction 179 /385

The pre-processor

Macros

@ Pre-processing macros can take arguments:

"

#define DEBUG(x) std::cout << #x << " = " << x << " at line
<< __LINE_. << std::endl

int myVar;

// Complex code
DEBUG (myVar)

// More complex code

will produce output “myVar = 42 at line 723”.
o #x forms a string from a macro parameter
@ __LINE__is the current line-number
@ _FILE__is the current filename

Note that there is no space after DEBUG. Putting one here would define
a macro starting with (x) rather than a macro taking a parameter x.

Philip Blakely (LSC) C++ Introduction 180 /385

The pre-processor

Dangers of macros

@ Macros do simple text-replacement, so can be very dangerous:

#define SQUARE (a) axa
int b = SQUARE (c+3);

expands to

int b = c+3*xc+3;

which is wrong.

o Furthermore:

#define SQUARE (a) (a)=*(a)
int b = SQUARE (c++);

expands to (c++)* (c++) which will increment c twice, rather than
the once that was hoped for.

@ In short, macros are very dangerous, and should not be used,
unless you really know what you are doing.

Philip Blakely (LSC) C++ Introduction 181 /385

The pre-processor

Assertions

@ When programming, we often make assumptions that certain
conditions hold at, for example, the beginning of a function

For example, that an array index is not out of bounds, that a
pointer is not nullptr, etc.

In theory, if coded correctly, such conditions should never arise

However, if they do, they can cause odd side-effects and produce
errors apparently unconnected with the original error

To check for such errors, you can use assert to ensure that
required conditions hold:

#include <assert.h>

double f (int a){

n)
assert(a > 5);
return sqgrt(a —

}

o If a <= 5 on entry to the function, the program will abort.

5);

Philip Blakely (LSC) C++ Introduction 182 /385

Larger projects

Outline

€@ Larger projects

Philip Blakely (LSC) C++ Introduction 183 /385

Larger projects

Project organization

@ When developing a large project, it is very useful to divide up
functions into groups, depending on their intended use

So, for a given group of functions, might have
IdealGas.H containing function prototypes and
IdealGas.C containing function definitions.

A separate group of functions in Simulation.C that need to know
about those defined in IdealGas.C, just needs to #include
"IdealGas.H"

So, Simulation.C knows all about the functions from IdealGas.C.

@ But, functions in Simulation.C need to be able to call functions
in IdealGas.C

How do we link the two files together?

Philip Blakely (LSC) C++ Introduction 184 /385

Larger projects

Linking

Suppose we have the following:

MyFunc.H: Main.C:
int doublelIt (int); #include <iostream>
#include "MyFunc.H"
MyFunc.C:
) int main(void){
#include "MyFunc.H" std::cout <<
int doubleIt (int x){ doublelIt (5) <<
return 2+*x; std::endl;
} return 0;

}

Philip Blakely (LSC) C++ Introduction 185 /385

Larger projects

Linking

First compile object files:

e g++ -c MyFunc.C -o MyFunc.o
e g++ -c Main.C -o Main.o

(-c means to produce an object file)

The object files contain the definitions of the functions.
@ Then link these object files into a final executable:

e g++ Main.o MyFunc.o -o myProg
@ The final command links the files together; the linker tries to find
all functions that are referenced in each file, but whose definitions
do not occur in that file.

o If some functions are not found at this stage, then a linker error
results.

Philip Blakely (LSC) C++ Introduction 186 /385

Larger projects

Linking error

If we omit one of the object files, we get a linker error:

g++ Main.o -o MyProgram

Main.o: In function ‘main’:

Main.C: (.text+0xa): undefined reference to ‘doublelt(int)’
collect2: 1d returned 1 exit status

If we had created a function with the same name and arguments in two
separate object files, we might get a different linker error:

MyFunc2.o0: In function ‘doubleIt(int)’:
MyFunc2.C: (.text+0x0): multiple definition of ‘doublelt(int)’
MyFunc.o:MyFunc.C: (.text+0x0): first defined here

Philip Blakely (LSC) C++ Introduction 187 /385

Larger projects

Multiple include files

e For large projects, there will be many include files, with complex
interdependencies.

@ However, it is an error in C++ to define classes or functions more
than once.

o It is possible that multiple header files will try to include the same
header file themselves.

e For example,
MylIncludeFile_1.H:

#include <vector>

MylIncludeFile_2.H:

#include <vector>
#include "MyIncludeFile_1.H"

could cause problems if vector defined some functions/classes.

Philip Blakely (LSC) C++ Introduction 188 /385

Larger projects

Include guards

However, looking at vector reveals the following:

#ifndef _GLIBCXX_VECTOR
#define _GLIBCXX_VECTOR 1

// ... Code goes here ...
#endif /* _GLIBCXX_VECTOR */

This will prevent the code in between the “include-guards” from being

included more than once.

Philip Blakely (LSC) C++ Introduction

189 /385

Larger projects

Extern

o To allow global variables to be seen in all source-files, we can use:

extern int a;

@ This can be put in a header file in the same way as a function
prototype

@ As long as the variable is defined in exactly one file:
int a = 77;
the linker will not raise an error.

@ Remember that global variables are usually evil, and making them
available in multiple source-files is usually worse.

Philip Blakely (LSC) C++ Introduction 190 /385

Larger projects

Libraries

As with any major programming language, there are libraries of
functions written by various developers. Examples are:

@ BLAS - Optimized Vector/Matrix operations
@ Boost - Advanced C++ utilities

These usually come in the form of various include files (.h,.hpp, or
.H), which contain function prototypes which must be included in any
source-file that uses them, and library files .so

Philip Blakely (LSC) C++ Introduction 191 /385

Larger projects

Linking to system libraries

In order to link to system libraries, do the following;:
g++ Main.o MyFunc.o -o MyProgram -lblas

to link in the library in /usr/1ib/libblas.so.
To link in a library not in a system directory, use:

g++ Main.o MyFunc.o -o MyProgram -L/opt/blas/lib -lblas

if /opt/blas/1ib contains libblas.so
Note: the .so extension stands for “shared-object”.

Philip Blakely (LSC) C++ Introduction 192 /385

Larger projects

Compiler options (gcc)

Other possible compiler options are:

e -01, -02, -03 levels of optimization
-02 is usually sufficient, although -03 may be necessary for
inter-procedural optimization, but could bloat/slow your code.

-g Compile with debugging symbols (which associate
variables/functions with machine-code to help a debugger).

-I<path> Specify directory in which to look for include files.

-ansi Turn off implementation specific features not in the
C++ standard.

-Wall Turn on compiler warnings

-Werror Make warnings into errors (i.e. fail to compile)
-pedantic Issue all warnings mandated by the standard
-0 filename Output to this file

Philip Blakely (LSC) C++ Introduction 193 /385

Larger projects

Other compilers

The compiler flags listed in this section are for gcc

Other compilers use similar options for include directories,
libraries, and simple optimization

o Differences occur for more advanced optimization options, warning
specifications, standard compatibility, etc.

@ Read your compiler’s documentation to find out more.

Philip Blakely (LSC) C++ Introduction 194 /385

