
Part VIII

More classes

Philip Blakely (LSC) C++ Introduction 228 / 385

Inheritance

Outline

29 Inheritance

30 Virtual functions

31 Polymorphism

32 Classes and static

Philip Blakely (LSC) C++ Introduction 229 / 385

Inheritance

Inheritance

In OOP, we may have objects which are of some general type, but
are also of some specialised type

For example, we may have a Vehicle class with various member
functions:

Vehicle v;
v.setNumberPassengers(4);
v.startEngine();

However, there are types of vehicle with features not shared by all
other vehicles:

car.openBoot();

doesn’t apply to a ferry, for example

Philip Blakely (LSC) C++ Introduction 230 / 385

Inheritance

Inheritance

We would like to have a Car be a
specialized type of Vehicle:

class Car : public Vehicle
{
public:

void openBoot();
};

Now Car inherits the member
functions and data of Vehicle, and
can be regarded as being of type
Vehicle:

Car car;
car.openBoot();
car.startEngine();
Vehicle v;
v.openBoot(); // Compile−time error

Philip Blakely (LSC) C++ Introduction 231 / 385

Inheritance

Protected inheritance for data

When Car derives from Vehicle, we may want it to have access to
some of Vehicle’s data:

class Vehicle{
public:
void setNumPassengers(int);
int getNumPassengers()const;

protected:
int numPassengers;

private:
int vehicleData;

};

Now, a member-function of Car can access numPassengers, but not
vehicleData.

Philip Blakely (LSC) C++ Introduction 232 / 385

Inheritance

Protected inheritance for functions

The same applies to member-functions of a parent class:

class Vehicle{
protected:

void runStarterMotor();
};

This is then not accessible from outside Vehicle

(only called through a public function such as turnIgnitionOn).

However, it is accessible from member functions of Car because
Car inherits Vehicle as a public class

Philip Blakely (LSC) C++ Introduction 233 / 385

Inheritance

Inheritance rules

Suppose we have a classes X and Y:

class X{
public:
int pub;
int m();

protected:
int pro;

private:
int pri;

};

class Y : public X {
public:
int f();

};

int main(){
X x;
x.pub=0;// OK
x.pro=0;// Error
x.pri=0;// Error
}

int X::m(){
pub = 0;// OK
pro = 0;// OK
pri = 0;// OK
}

int Y::f(){
pub = 0;// OK
pro = 0;// OK
pri = 0;// Error
}

Philip Blakely (LSC) C++ Introduction 234 / 385

Inheritance

Constructing base classes

In order to initialize members of a base class in a constructor, you
can either initialize them directly:

Child::Child(int a, int b){
m parentData = a;
m childData = b;

}

or by calling the base class constructor:

Child::Child(int a, int b) : Parent(a) {
m childData = b;

}

Philip Blakely (LSC) C++ Introduction 235 / 385

Virtual functions

Outline

29 Inheritance

30 Virtual functions

31 Polymorphism

32 Classes and static

Philip Blakely (LSC) C++ Introduction 236 / 385

Virtual functions

Virtual functions

What happens if we want a Car to have a maximum number of
passengers, but most Vehicles do not have this restriction?

We could introduce a new data-member, maximumPassengers, to
the Vehicle class:

void Vehicle::setNumberPassengers(int p){
if(p > maximumPassengers){
std::cout << "Crowded" << std::endl;

}
}

However, this represents a leakage of information into the base
class

Anyway, we would potentially have to do this every time we
wanted to add extra information to a Car

Philip Blakely (LSC) C++ Introduction 237 / 385

Virtual functions

Virtual functions

Virtual functions allow definitions of functions in a base-class to
be re-implemented by a derived class

class Vehicle{
public:
virtual void setNumberPassengers(int);

};
void Vehicle::setNumberPassengers(int p){

passengers = p;
}
class Car : public Vehicle{
void setNumberPassengers(int) override;

};
void Car::setNumberPassengers(int p){
if(p > 6){
std::cout << "Crowded" << std::endl;

}
passengers = p;

}

Philip Blakely (LSC) C++ Introduction 238 / 385

Virtual functions

Virtual functions ctd.

If setNumberPassengers() is called
on a Vehicle, then the first version
is called.

If setNumberPassengers() is called
in a Car, then the second version is
called.

Ferry f;
f.setNumberPassengers(10); //

Will not print error message
Car c;
c.setNumberPassengers(10); //

Will print error message

Philip Blakely (LSC) C++ Introduction 239 / 385

Virtual functions

Abstract classes

Consider the function addPassenger:

There may be no sensible way of defining the function
addPassenger for a generic Vehicle, but all Vehicles must
implement this function.

This can be expressed as follows:

class Vehicle{
public:
virtual void addPassenger() = 0;

};

Philip Blakely (LSC) C++ Introduction 240 / 385

Virtual functions

Abstract classes ctd

assPassenger is now a pure virtual function

Vehicle is an abstract class

No object of type Vehicle can now exist

All classes derived from Vehicle must implement addPassenger

Trying to create an object of type Vehicle will fail.

class Car : public Vehicle{
public:
void addPassenger() override;

};
void Car::addPassenger(){

// Code here
}

Vehicle v; // Compile−time failure
Car c; // OK
Vehicle* c2 = new Car; // OK
c2−>addPassenger(); // Calls Car’s version.

Philip Blakely (LSC) C++ Introduction 241 / 385

Virtual functions

Abstract classes ctd

It is an error to specify override for a function that is not
overriding another one.

The main reason for this syntax is clarity for the developer about
the intent of the class/function.

Philip Blakely (LSC) C++ Introduction 242 / 385

Virtual functions

Final functions

Sometimes we want to prevent
virtual functions from being
overridden.

class Car : public Vehicle{
public:
void turnIgnition(bool)const final;

};
class FordPrefect : public Car{
public:
void turnIgnition(bool)const override; // Error

};

Philip Blakely (LSC) C++ Introduction 243 / 385

Virtual functions

Final functions

We have prevented any further derived classes from Car from
overriding the turnIgnition function.

This may provide some performance improvement, because the
compiler knows that car->turnIgnition(true) always calls
Car::turnIgnition, never any overridden version.

This improvement is unlikely to be important in practice, though;
measure if you think it is important.

Philip Blakely (LSC) C++ Introduction 244 / 385

Polymorphism

Outline

29 Inheritance

30 Virtual functions

31 Polymorphism

32 Classes and static

Philip Blakely (LSC) C++ Introduction 245 / 385

Polymorphism

Polymorphism

Polymorphism allows objects of one type to be referred to as
objects of another type, if their inheritance allows:

Vehicle* v = new Car;
v−>setNumberPassengers(4);

will call Vehicle’s version of setNumberPassengers

or Car’s, if Car overrides setNumberPassengers as a virtual
function

std::array<Vehicle*,4> queue;
v[0] = new Car;
v[1] = new Bus;
v[0]−>setNumberPassengers(4); // Calls Car’s version
v[1]−>setNumberPassengers(10); // Calls Bus’s version

Philip Blakely (LSC) C++ Introduction 246 / 385

Polymorphism

Polymorphism ctd.

The function that will be called is only determined at run-time.

This does not contradict static type-checking

Assigning an object of type Car to a Vehicle pointer causes the
compiler to check that Car derives from Vehicle.

For a class with virtual functions, the compiler will generate a
“v-table”, which allows it, for a given derived class, to determine
which function it should jump to.

This could be thought of as a class containing a set of function
pointers for each of its virtual functions

Calling a virtual function therefore requires a very tiny amount of
extra overhead compared to a simple member function call.

Philip Blakely (LSC) C++ Introduction 247 / 385

Polymorphism

Losing polymorphism (Slicing)

Object slicing occurs when a derived object is assigned to a
variable of base-class type:

DerivedClass d;
BaseClass b = d;

will compile.

However, the assignment only copies data relevant to BaseClass

from d to b (the rest has been sliced off).

The same problem would occur in the following:

DerivedClass *d = new DerivedClass;
BaseClass b = *d;

Here, b is only of type BaseClass

This behaviour is nearly always undesirable.

Philip Blakely (LSC) C++ Introduction 248 / 385

Polymorphism

Downcasting

So far, we have seen examples of up-casting, where a derived class
pointer is converted to a base-class pointer

Consider the following:

void maintain(Vehicle* v){
v−>checkChain();

}

and we want to call this function for a collection of Vehicles

However, only a Bicycle has a chain, so this will fail to compile!

(Here, maintain should probably be a member function of
Vehicle, but ignore this for the purposes of argument.)

How can we check at run-time whether v is a Bicycle?

Philip Blakely (LSC) C++ Introduction 249 / 385

Polymorphism

Dynamic-casting

The following is valid:

Bicycle* b = dynamic cast<Bicycle*>(v);

and will convert v to be of type Bicycle if possible.

If not possible, then the dynamic cast returns nullptr:

if(b){
b−>checkChain();

}

is perfectly valid.

Almost all uses of dynamic cast are the result of bad design and
are better replaced by a member function:

bool Vehicle::isBicycle()const;

(or just making maintain a virtual member function of Vehicle)

However, there are cases where it is needed

Philip Blakely (LSC) C++ Introduction 250 / 385

Polymorphism

Multiple inheritance

It is also possible for a class to derive from
multiple classes

class EvilWizard : public EvilCreature,
public MagicUser{};

since not all EvilCreatures can wield magic,
and not all MagicUsers are evil.

An EvilWizard can therefore be used as an
EvilCreature or as a MagicUser

We can now use

EvilCreature* e = new EvilWizard;
if(dynamic cast<MagicUser*>(e))

to determine whether an EvilCreature is also a
MagicUser.

Philip Blakely (LSC) C++ Introduction 251 / 385

Polymorphism

Virtual inheritance

What happens in the previous
example if we have a general
Character class?

Obviously every EvilCreature is
a Character and so is every
MagicUser:

class MagicUser : public
Character{};

class EvilCreature : public
Character{};

But now EvilWizard has two
Character bases

Anything stored in Character

will be duplicated, and refering to
the Character base of
EvilWizard is ambiguous.

Philip Blakely (LSC) C++ Introduction 252 / 385

Polymorphism

Virtual inheritance

We can correct this by using
virtual inheritance

class MagicUser : public
virtual Character{};

class EvilCreature : public
virtual Character{};

Now EvilWizard has a unique
Character base

It can be consistently cast to
something of type Character

Further, the following is now
valid:

Character* c = new EvilWizard;

Philip Blakely (LSC) C++ Introduction 253 / 385

Classes and static

Outline

29 Inheritance

30 Virtual functions

31 Polymorphism

32 Classes and static

Philip Blakely (LSC) C++ Introduction 254 / 385

Classes and static

Static in member functions

Recall that static variables are local to a function, but are
initialized only once and persist throughout the program’s run

The same applies to static variables in a class’s member-function

These are not unique to each class instance:

int A::f(int x){
static int firstVal = x;
return firstVal;

}

A a,b;
int x = a.f(5); // x == 5
int y = b.f(6); // y == 5

Philip Blakely (LSC) C++ Introduction 255 / 385

Classes and static

Static member data

It is permissable to have static member data within a class

This data is then available to all instances of the class, similar to
global variables, but with class access-permissions

Ordinary member data has space allocated when an instance of
the class is allocated

Static member data must be allocated exactly once per program

This is done outside the class definition:
class A{
static double myData;

};

double A::myData = 9.80665;

For constant static variables of integer or enumeration type only,
the initialization can be done inside the class definition:
class A{
static const int myVal = 9;

};

Philip Blakely (LSC) C++ Introduction 256 / 385

Classes and static

Static member functions

Class member functions may also be static.

This means that they do not need a class object on which to be
called:

class A{
static int f();

};

int A::f(){
return 9;

}

int x = A::f();

Static member functions may not have const or virtual qualifiers

Philip Blakely (LSC) C++ Introduction 257 / 385

Classes and static

Use of static

One use for static functions is the following:

Suppose we have a class which must only be instantiated once in a
program

We could use a global variable, but this fails to prevent other
functions from creating new instances, and means that the
initialization of the variable is situated away from the class

This is known as a Singleton, and can be implemented as:

class SimlParams{
public:

static const SimlParams* inst(){
static SimlParams* s = new SimlParams;
return s;

}
private:
SimlParams();

};

Philip Blakely (LSC) C++ Introduction 258 / 385

Classes and static

Use of the Singleton

Since the constructor is private, this prevents other functions from
creating a different instance of SimlParams.

Since s is static, only a single instance of SimlParams is created,
and this is returned every time inst is called.

This construct is used as:

const SimlParams* params = SimlParams::inst();

Note that we do not require an object of type SimlParams to call
inst.

This construct can be used anywhere in the code to reference the
unique instance of SimlParams

Any misuse of the class, such as multiple instantiations, is
prevented.

Philip Blakely (LSC) C++ Introduction 259 / 385

