
C++: Practical session 1

1 My First C++ Program

Open your favourite text-editor, and type in the following:

#include <iostream>

int main(void)
{
std::cout << "Hello World" << std::endl;
return 0;

}

Save the file as HelloWorld.C and then, at the command-line, type the following:
g++ HelloWorld.C -o HelloWorld

./HelloWorld

You should see Hello World displayed on the screen.

2 Compiler and C++ behaviour

The following examples are not meant to put you off using the powerful optimization facilities available in
the compiler; they are only intended as a cautionary tale. You do not need to understand the code given at
this stage (although you should in a few lectures’ time).

2.1 Integer Overflow

Type in the following program into the file IntOverflow.C:

#include <iostream>

int main(void)
{
signed int s = 0;
for(unsigned int i=0 ; i < 10 ; i++)
{
for(unsigned int j=0 ; j < 1048576 ; j++)
{
s += 1024;

}
std::cout << "s = " << s << std::endl;

}
return 0;

}

Before compiling and running it:

1. What do you think it will do?

2. What should it do?

1



Now compile and run. What happens? Are you surprised?
Now compile using the following command: g++ IntOverflow.C -o IntOverflow -O2

This compiles using the second level of optimization.
Now run the code again. What happens? Are you surprised?
Note: This example only produces odd behaviour on gcc versions >= 4.8 and at least up to gcc 9.1.0

Other compilers may or may not produce unexpected behaviour.

2.2 Integer overflow - clang

If you are using a Mac, or are using clang++ on Linux, try the following, with either no optimization or -O2
optimization:

#include <stdio.h>

void f1(void) {
for(int i = 0; i >= 0; i++) {
}

}

void f2(void) {
puts(‘‘Formatting /dev/sda1...’’);

}

void (*p1)(void) = f1;
void (*p2)(void) = f2;

int main(void) {
p1();
return 0;

}

(Example taken from https://twitter.com/m13253/status/1371615680068526081?lang=en-GB and
godbolt.org/z/1q1bjn).

This example only produces odd behaviour on gcc <= 7.4.0 but also on clang at least up to 7.0.1.

2.3 Float to integer truncation

Type in the following program into the file FloatIntConversion.C

#include <iostream>

int main(void)
{
float c = 1e34;
std::cout << c << std::endl;
int b = c;
std::cout << b << std::endl;
return 0;

}

Before compiling and running it:

1. What do you think it will do?

2. What should it do?

Now compile and run. What happens? Are you surprised?
Now compile using the following command: g++ FloatIntConversion.C -o FloatIntConversion -O2

This compiles using the second level of optimization.
Now run the code again. What happens? Are you surprised?

2



2.4 Important note

The preceding problems can only arise because they involve undefined behaviour within C++. Ordinarily,
optimization should not alter the outcome of a program. If it does, then either you are relying on undefined
behaviour, or the compiler writers have made a mistake. The former is substantially more likely.

3 Division of negative integers

Find out what you get if you divide -5 by -2 (or similar).
Note that turning optimization on will not change the behaviour of the code; the result is implementation

defined, not undefined.
Check that (a/b)*b + a%b == a as required.

3


