C++: Practical session 1

1 My First C+ Program

Open your favourite text-editor, and type in the following:

#include <iostream>
int main (void)

std::cout << "Hello World" << std::endl;
return 0;

}

Save the file as HelloWorld.C and then, at the command-line, type the following:
gt++ HelloWorld.C -o HelloWorld
./HelloWorld
You should see Hello World displayed on the screen.

2 Compiler and C++ behaviour

The following examples are not meant to put you off using the powerful optimization facilities available in
the compiler; they are only intended as a cautionary tale. You do not need to understand the code given at
this stage (although you should in a few lectures’ time).

2.1 Integer Overflow

Type in the following program into the file IntOverflow.C:

#include <iostream>

int main (void)

signed int s = 0;
for (unsigned int i=0 ; i < 10 ; i++)

{
for (unsigned int 3=0 ; J < 1048576 ; Jj++)
s += 1024;
std::cout << "s = " << s << std::endl;

return 0;

}

Before compiling and running it:
1. What do you think it will do?
2. What should it do?



Now compile and run. What happens? Are you surprised?

Now compile using the following command: g++ IntOverflow.C -o IntOverflow -02
This compiles using the second level of optimization.

Now run the code again. What happens? Are you surprised?

Note: This example only produces odd behaviour on gcc versions >= 4.8 and at least up to gcc 9.1.0
Other compilers may or may not produce unexpected behaviour.

2.2 Integer overflow - clang

If you are using a Mac, or are using clang++ on Linux, try the following, with either no optimization or -02
optimization:

#include <stdio.h>

void f1l(void) {
for(int 1 = 0; 1 >= 0; i++) {
}

}

void f2(void) {
puts () ‘Formatting /dev/sdal...’’);

}

void (*pl) (void)
void (*p2) (void)

f1;
£2;

int main(void) {

pl();
return 0;

}

(Example taken from https://twitter.com/m13253/status/137161568006852608171ang=en-GB and
godbolt.org/z/1qlbjn).
This example only produces odd behaviour on gcc <= 7.4.0 but also on clang at least up to 7.0.1.

2.3 Float to integer truncation

Type in the following program into the file FloatIntConversion.C

#include <iostream>

int main (void)

{

float ¢ = 1le34;

std::cout << ¢ << std::endl;
int b = c¢;

std::cout << b << std::endl;
return 0;

}

Before compiling and running it:
1. What do you think it will do?
2. What should it do?

Now compile and run. What happens? Are you surprised?

Now compile using the following command: g++ FloatIntConversion.C -o FloatIntConversion -02
This compiles using the second level of optimization.

Now run the code again. What happens? Are you surprised?



2.4 Important note

The preceding problems can only arise because they involve undefined behaviour within C++. Ordinarily,
optimization should not alter the outcome of a program. If it does, then either you are relying on undefined
behaviour, or the compiler writers have made a mistake. The former is substantially more likely.

3 Division of negative integers

Find out what you get if you divide -5 by -2 (or similar).

Note that turning optimization on will not change the behaviour of the code; the result is implementation
defined, not undefined.

Check that (a/b)*b + a)b == a as required.



