
C++: Practical session 10

1 Basic use of vector, list, and map

1.1 Vector

Write a program to take as input a set of positive floating-point numbers from the user, using a negative
number to indicate the end of the set, and put them into a std::vector. Next, sort this list in ascending
order, and output every other element of the sorted std::vector, starting with the first.

Sample program output:

Please enter a list of positive numbers, ending with a negative one:

2.3

1.2

9.7

2.718182818

4.2857142857

10.9

100.0

-1

Sorted vector, every other element:

1.2

2.718281828

9.7

100

You will need to use a.push back(myVal); which appends an element to a container. The push front(myVal)

function is only available for certain containers, such as list.
You should first make sure that you can sort the vector and output every element before trying to only

output every other one. Note that incrementing myVector.end() is undefined, so you will have to be careful.
Now alter your program to use a std::list instead. Recall that for a list, sort() is a member function.

1.2 Telephone directory

Use a std::map<std::string, std::string> to store a telephone directory. Your program should read a
set of names and telephone numbers from the user and put these into the directory. It should then allow the
user to look up people’s telephone numbers from the directory.

Recall that accessing a std::map with [key] always adds the named element. Use find instead. Sample
program output:

Name: Dr Doolittle

Number: 03402 646257

Name: Prof Smith

Number: 05624 814253

Name: Mr Hyde

Number: 06417 639124

1



Name: Dr Jekyll

Number: 06417 639124

Name:

Starting look-up.

Name: Prof Smith

The telephone number for Prof Smith is 05624 814253.

Note that in order to allow spaces when inputing a string, you should use:

std::getline(std::cin, name);

which will read a complete line, including spaces, from std::cin into name.

1.2.1 Extension

Implement a reverse lookup facility (i.e. determine who’s calling, given their number). What is the expected
complexity of this operation, compared to simple lookup? Note that, given the above input, the program
should print two names for one of the numbers.

Use string processing to parse and store each telephone number in a standard format, such as +44 01223

746627. Alternatively, use a class or struct to store the telephone number.

2


