
C++: Practical session 12

1 Analysis of British Prime Ministers

Write a program that successively does the following:

1. Read in the list of names of British Prime Ministers from the file https://www-internal.lsc.phy.

cam.ac.uk/pmb39/PMs.txt into two std::vectors, one for forename and one for surname.

2. Note that you only need to use: inputFile >> firstName >> surname as the separate names are
guaranteed to be a string with no spaces.

3. Use std::find to find the first PM called George, and print his position in the list and his full name.

4. Use std::find to find the first PM called Richard, and print his position in the list and his full name.

5. Use std::count to count the number of PMs called Charles.

6. Use std::adjacent find repeatedly to find all instances where successive PMs had the same first
name.

You will need to use a C++ reference to find the correct syntax. Try https://en.cppreference.com/w/

cpp/algorithm/find etc.

1.1 Extensions

Redo the exercise using a single std::vector<std::pair<std::string, std::string> > to store the first
names and surnames. This will require the use of predicate functions to access only the first element of the
pair.

2 Frequency analysis

(Somewhat harder; only do if you have the time and inclination)
For this practical you will need to look up the available algorithms implemented within the std::string

class.
Write a program that conducts a frequency analysis on a string provided by the user, and outputs a data

file for use in gnuplot.
All punctuation should be ignored, and capitals should be treated the same as lower-case. You should

use a suitable STL algorithm. Download http://www.gutenberg.org/files/829/829-0.txt and perform
the same analysis on this.

Write a program that counts the number of words in a given text (consider first the definition of a
word). You may need to perform some whitespace transformations before doing the full analysis. Determine
the frequency of the word “the” in the previous text. Comment on the computational complexity of the
preceeding algorithms. Determine the frequency of all words found in the document. You should use a
std::map to store the frequency of all words found.

1


