
C++: Practical session 2

1 Solution to a quadratic

Your task is to implement a robust program to compute the solution(s) to a quadratic equation entered by
ther user. Your program should be able to deal with all possible cases that could arise.

Example run:

Solving a*x*x + b*x + c = 0:

Enter a: 2

Enter b: 5

Enter c: -3

Solutions are 0.5 and -3.

Enter a: 3

Enter b: 0

Enter c: 1

There are no real solutions

1.1 Extensions

a) Extend your program to print any complex solutions to the quadratics (Note the existence of complex.h.
However, this does not deal well with floating-point overflow, and should be avoided when any robust
system is required.)

b) (For masochists only): Write a similar version for cubics and/or quartics

2 Squares

Write a program that reads an integer from the user, and then proceeds to list all the squares from 0 up to
that integer.
An example run would look like:

Please enter the maximum square: 4

0 * 0 = 0

1 * 1 = 1

2 * 2 = 4

3 * 3 = 9

4 * 4 = 16

2.1 Extensions

a) What happens if the user enters -4? Change your program to ask the user for another number if their
input does not make sense.

1



b) Output the values to a file that can be plotted in gnuplot. The file format should be two columns, with
x in the first column, and x2 in the second.

This can be plotted in gnuplot using plot "squares.dat" using 1:2 with lines

3 Type-limits

Use the templated class std::numeric limits<T> to find out about as many of the built-in types in your
C++ implementation as possible.

For integral types, you should be able to find out:

� The number of bits used

� The range of values held

� The signedness

For floating-point types, you should be able to find:

� The number of bits used for the exponent and mantissa

� The range of values held

� The range of the exponent

� The smallest value such that 1 + x > 1.

2


