
C++: Practical session 6

1 Preprocessors and macros

The following macro could be used in place of assert:

#define ASSERT(x) if(!(x))\
{\
std::cout << "Test " << #x << " failed at line " \

<< LINE \
<< " in " << FILE << std::endl; \

}

Points to note:

1. The \ is a line-continuation character that tells the pre-processor that the macro definition has not yet
finished.

2. #x expands to a stringified form of the macro argument x

3. LINE is replaced by the line number where the macro is expanded

4. FILE is replaced by the file name where the macro is

Try using the above macro in a simple program:

int a = 5;
ASSERT(a == 5);
ASSERT(a == 6); // Should fail

How could it be improved?
To apply just the preprocessor to a file, use:

g++ -E MyProgram.C -o MyProgram.preproc

Open the pre-processed code in a text-editor. Note the amount of code produced by <iostream>.
Why are the brackets necessary around !(x) ?

1.1 More macros

Comment on the following macros. You may wish to try using them in a program to see how they work.

1. #define POW2(i) 1 << i

Try using this as int i = POW2(3); and outputting std::cout << POW2(8);

2. #define MIN(a,b) (((a) < (b)) ? (a) : (b))

Try using with MIN(a++, b++) and displaying a and b afterwards.

3. #define DISPLAY(x) std::cout << "At line " << LINE << " " << #x << " = " << x << std::endl;

4. #define fabs(x) ((x > 0) ? (x) : (-(x)))

1

5. #define DEFINE MIN3(T)\
T myMin(T a, T b, T c){\

if(a < b && a < c){\
return a;\

}\
else if(b < c){\

return b;\
}\
else{\

return c;\
}\

}\

DEFINE MIN3(int)
DEFINE MIN3(float)
DEFINE MIN3(double)

which generates three overloaded functions (same name, different arguments), called myMin which can
be used as:

int a = myMin(3,1,8);

Use gcc -E to see exactly what the above macros all produce after pre-processing.

2 Object files and linking

Take the code that you wrote to solve an ODE, and put the Euler solver into a separate file. You should do
this in the following stages:

1. Turn the Euler solver into a function with signature:

double eulerStep(double x, double dt);

2. Create a header file Euler.H containing the above signature.

3. Remove the eulerStep function into a separate file Euler.C.

4. Create a header file MyFunc.H containing the prototype for the derivative function double f(double

x);, which should be contained in MyFunc.C

5. #include the header file for f in Euler.C and likewise for Euler.H in Main.C (which contains the
definition of f).

6. Compile the three files MyFunc.C, Main.C and Euler.C into object files and link them together.

2.1 Extensions

1. Implement the RK2 scheme in a separate file.

2. Rewrite the Euler/RK2 functions so that they take a function object instead of assuming that the
function is called f. You can now dispose of the MyFunc.H header file from within Euler.C (although
it is still needed in Main.C).

2

