C++: Practical session 6

1 Preprocessors and macros

The following macro could be used in place of assert:

#define ASSERT (x) 1if(!(x))\

{\

std::cout << "Test " << #x << " failed at line " \
<< __LINE__ \
<< " in " << __FILE_. << std::endl; \

}

Points to note:

1. The \ is a line-continuation character that tells the pre-processor that the macro definition has not yet
finished.

2. #x expands to a stringified form of the macro argument x
3. __LINE__ is replaced by the line number where the macro is expanded
4. _FILE__is replaced by the file name where the macro is

Try using the above macro in a simple program:

int a = 5;
ASSERT (a == 5);
ASSERT (a == 6); // Should fail

How could it be improved?
To apply just the preprocessor to a file, use:

g++ —-E MyProgram.C -o MyProgram.preproc

Open the pre-processed code in a text-editor. Note the amount of code produced by <iostream>.

Why are the brackets necessary around ! (x) 7

1.1 More macros

Comment on the following macros. You may wish to try using them in a program to see how they work.

1. #define POW2(i) 1 << i
Try using this as int i = POW2(3); and outputting std::cout << POW2(8);

2. #define MIN(a,b) (((a) < (®)) 7 (a) : (b))
Try using with MIN(a++, b++) and displaying a and b afterwards.

3. #define DISPLAY(x) std::cout << "At line " << _LINE__ << " " << #x << " = " << x << std

4. #define fabs(x) ((x> 0) ? (x) : (-(x)))

::endl;

5. #define DEFINE_MIN3(T)\
T myMin(T a, T b, T ¢){\
if(a<be&s a<c)i
return aj\
A
else if (b < ¢){\
return b;\
A
else{\
return c;\

H
I

DEFINE_MIN3 (int)
DEFINE_MIN3 (float)
DEFINE_MIN3 (double)

\

which generates three overloaded functions (same name, different arguments), called myMin which can
be used as:

int a = myMin(3,1,8);

Use gce -E to see exactly what the above macros all produce after pre-processing.

2

Object files and linking

Take the code that you wrote to solve an ODE, and put the Euler solver into a separate file. You should do
this in the following stages:

1.

2.1

Turn the Euler solver into a function with signature:

double eulerStep (double x, double dt);
Create a header file Euler.H containing the above signature.
Remove the eulerStep function into a separate file Euler.C.

Create a header file MyFunc.H containing the prototype for the derivative function double f(double
x) ;, which should be contained in MyFunc.C

#include the header file for £ in Euler.C and likewise for Euler.H in Main.C (which contains the
definition of f).

Compile the three files MyFunc.C, Main.C and Euler.C into object files and link them together.

Extensions

. Implement the RK2 scheme in a separate file.

Rewrite the Euler/RK2 functions so that they take a function object instead of assuming that the
function is called £. You can now dispose of the MyFunc.H header file from within Euler.C (although
it is still needed in Main.C).

