
C++: Practical session 8

1 LSC group class structure

Consider the LSC research group. It is made up of a number of people, who have varying rôles and attributes.
The following roles exist:

� Head of group

� Post-docs

� Ph.D. students

� MPhil students

� Interns

� Visitors

These have one, more, or none of the following attributes:

� Income (called salary for some people, and grant for others)

� Number of students supervised

� Hours of lectures given per week

� Hours of lectures taken per week

� Submission deadline

Design a class structure that implements this hierarchy. You only need to write the class definitions,
not the definitions of all the necessary functions. There should be a consistent base-class for all the classes,
called Researcher, which contains a researcher’s name and title.

In the course of designing the class structure, you should use virtual functions and pure virtual functions,
protected and private member data, and also publically available data-access functions. You may wish to
implement functions that modify the classes, such as setting a new income value or assigning more lectures
to them.

You may also wish to have a separate abstract Lecturer class, leading to a LecturerPostDoc class. How
could you then use dynamic cast to detect whether a PostDoc is also a Lecturer?

1.1 Detailed example

If you wish a more directed task than the somewhat open-ended problem above, then try to implement a
class hierarchy so that the following code compiles:

1



int main(void)
{
std::array<Researcher*,5> group;
group[0] = new MPhilStudent("Zebedee", 18);
group[1] = new PhdStudent("Florence");
group[2] = new PostDoc("Dougal", 6);
group[3] = new HeadOfGroup("Ermintrude");
group[4] = new Visitor("Rusty");

for(unsigned int i=0 ; i < 5 ; i++)
{
std::cout << "Researcher " << i << " is called " <<
group[i]−>name() << " and is a " << group[i]−>title() <<
std::endl;

Student* s = dynamic cast<Student*>(group[i]);
if(s)
{
std::cout << s−>name() << " is a student and must attend

" << s−>lectureHoursTakenPerWeek() << " hours of lectures
per week" << std::endl;
}

Staff* s2 = dynamic cast<Staff*>(group[i]);
if(s2)
{
std::cout << s2−>name() << " is a member of staff and

must give " << s2−>lectureHoursGivenPerWeek() << " hours of
lectures per week" << std::endl;
}

if(!s2 && !s)
{
std::cout << group[i]−>name() << " is neither student

nor staff" << std::endl;
}
std::cout << " " << std::endl;

}

for(unsigned int i=0 ; i < 5 ; i++)
{
delete group[i];

}
return 0;

}

and produces the output:

Researcher 0 is called Zebedee and is a MPhil Student

Zebedee is a student and must attend 18 hours of lectures per week

__________________________

Researcher 1 is called Florence and is a PhD Student

Florence is a student and must attend 0 hours of lectures per week

__________________________

Researcher 2 is called Dougal and is a Post Doc.

Dougal is a member of staff and must give 6 hours of lectures per week

__________________________

Researcher 3 is called Ermintrude and is a Head Of Group

Ermintrude is a member of staff and must give 0 hours of lectures per week

__________________________

Researcher 4 is called Rusty and is a Visitor

Rusty is neither student nor staff

2



__________________________

Each constructor takes the person’s name and (potentially) the number of hours for which they must
either lecture or be present in a lecture. This will default to zero for PhD students and Heads of Group.

2 More class structures

It is a well-known fact that a circle is a special case of an ellipse. Construct a pair of classes Circle and
Ellipse, such that one derives from the other.

The Circle class should have a getRadius() function, and the Ellipse class should have a setAxes(a,b)
function.

If you have difficulty with this, try to track down the precise cause of your difficulty.
For a full discussion of this problem, see https://isocpp.org/wiki/faq/proper-inheritance#circle-ellipse

3


