
Part II

C++11/14/17

Philip Blakely (LSC) Advanced C++ 34 / 217

For-loops

Outline

6 For-loops

7 Exceptions

8 Move Optimizations

9 Containers

Philip Blakely (LSC) Advanced C++ 35 / 217

For-loops

Range-based for loops

In C++03 we often had the following long syntax:

for(std::list<int>::const iterator iter = lst.begin() ;
iter != lst.end() ; ++iter)

In C++11 we can use:

for(const int& i : lst){
std::cout << i << ", ";

}
for(int& i : lst){
i ∗= 2;

}

We can even iterate over an in-place array:

for(double p : {1., 4., 9., 10., M PI}){
std::cout << "sqrt(" << p << ") = " << sqrt(p);

}

See Examples/for-loops.C.

Philip Blakely (LSC) Advanced C++ 36 / 217

Exceptions

Outline

6 For-loops

7 Exceptions

8 Move Optimizations

9 Containers

Philip Blakely (LSC) Advanced C++ 37 / 217

Exceptions

noexcept

In C++03 it was possible to indicate that certain functions would
never throw an exception, using throw().

In C++11 this is replaced by noexcept:

Vector::Vector()noexcept{
m data = nullptr;
m size = 0;

}

noexcept is part of the function signature in the same way as
const, for example.

If a noexcept function does throw an exception, the program will
immediately terminate.

This differs from default behaviour which would require that the
exception propagate up the function stack until a matching
catch() was found.

Philip Blakely (LSC) Advanced C++ 38 / 217

Exceptions

Exception function signatures

From C++17 onwards, the noexcept forms part of a function
signature:

void (∗p)();
void (∗∗pp)() noexcept = &p;

The above will fail because p is not a noexcept function.

See Examples/noexcept.C

Also, the throw(T) syntax is no longer permitted. The syntax:

void q() noexcept(false);

is permitted.

Philip Blakely (LSC) Advanced C++ 39 / 217

Move Optimizations

Outline

6 For-loops

7 Exceptions

8 Move Optimizations

9 Containers

Philip Blakely (LSC) Advanced C++ 40 / 217

Move Optimizations

Return Value Optimization

Consider the overloaded operator:
Vector operator+(const Vector& a, const Vector& b){

Vector c(a.size());
for(size t i=0 ; i < a.size() ; i++){
c[i] = a[i] + b[i];

}
return c;

}
Vector d = a + b;

In C++03, with typical copy/assign-constructors, this can result in
c being created, then copied into a newly created d.
This seems wasteful, as c will immediately be destroyed.
The Return Value Optimization allows compilers to avoid making
this copy, and only creating the final destination d.
In fact, gcc will do this at -O0 unless you explicitly disable it via
-fno-elide-constructors.
See Examples/move.C, compiling in C++03 mode with and
without -fno-elide-constructors.
Philip Blakely (LSC) Advanced C++ 41 / 217

Move Optimizations

Thwarting the Return Value Optimization

However the RVO is easily thwarted by adding the following (not
entirely unreasonable) code into operator+:

if(a.size() != b.size()){
return Vector(0);

}

There is no longer a single return point from the function, and the
result Vector is not necessarily always the same one.

Now, if we compile move.C with -DFORCE COPY in C++03 mode, it
includes the above code and we always have a copy-constructor
call.

Thus, adding the above will result in (possibly) slower code than
before, for no particularly good reason.

Philip Blakely (LSC) Advanced C++ 42 / 217

Move Optimizations

Move constructor

C++11 provides a way to move an object instead of copying it.
This is used when we know the object being copied from will no
longer be used (e.g. the returned c in the previous example).

Vector(Vector&& a){
m size = a.m size;
m data = a.m data;
a.m data = NULL;
a.m size = 0;

}

Instead of copying the data element by element, we copy the data
pointer itself, a constant-time operation.
We cannot write the usual copy-constructor this way because then
two Vectors would point to the same data.
Note that since a is about to be destroyed, its contents must be
something that the destructor will handle safely.
Compiling Examples/move.C with C++11 support results in no
slow copy functions being called.
Philip Blakely (LSC) Advanced C++ 43 / 217

Move Optimizations

Move into containers

There are now functions to add elements to containers using
move-syntax:

std::vector<Vector> vecs;
Vector a(10);
vecs.push back(std::move(a));

The std::move syntax comes from the <utility> header, and
indicates that the variable should be moved rather than copied.

Since we defined the Vector::Vector(Vector&& v) function to
invalidate the contents of v, the size of a above will be zero after
the std::move() call.

You should not attempt to use a after the above has been called.

See Examples/moveContainer.C.

Philip Blakely (LSC) Advanced C++ 44 / 217

Move Optimizations

Move into containers

To reduce computational expense, std containers will attempt to
move their elements, but only if the move operation is guaranteed
not to throw an exception.

(This follows the principles of Resource Allocation Is Initialization
- see later lecture.)

If a std::vector needs to copy all of its data into a new region of
memory (due to a push back for example), it will use the normal
copy constructor unless it is guaranteed that the move-constructor
will not throw an exception.

So, we should declare the move-constuctor noexcept:

Vector(Vector&& a)noexcept { ... }

Then, multiple insertions into an std::vector will not result in
any slow copies.

Philip Blakely (LSC) Advanced C++ 45 / 217

Move Optimizations

Move into containers

Examples/moveContainer.C demonstrates a copy-insertion, an
in-place construct and push-back, and an explicit moving
push-back:

vecs.push back(a);
vecs.push back(Vector(10));
vecs.push back(std::move(a));

With fully implemented move functions, only the first one
performs a slow copy.

If we omit the noexcept, then slow copies result if/when the
vector has to reallocate its memory.

Philip Blakely (LSC) Advanced C++ 46 / 217

Move Optimizations

Emplace

If move semantics had not been implemented for Vector, then:
vecs.push back(Vector(10));

causes a construction and then copy-construct.

Even with move semantics, it still causes a construct and move.

However, an emplace will construct in-place:
vecs.emplace back(10);

The 10 corresponds to the parameters to be passed to the
constructor.

Other emplace functions are available for various containers, e.g:
std::list<int> numbers;
numbers.emplace(iter, 20)

where the iterator indicates the position before which to insert the
new element.

std::map<std::string, int> ages;
ages.emplace("Tom", 10);

Philip Blakely (LSC) Advanced C++ 47 / 217

Move Optimizations

Move/Emplace performance

As usual, you should consider readability before performance.

The only reason that move-semantics give better performance is
that there are non-trivial resources associated with a Vector.

The emplace approach only avoids an extra move call.

However, if we did not have move-semantics, and used emplace, it
would save a copy-construct.

Any resource allocation due to the container itself cannot be
overcome using this method.

Most containers support some form of emplace for data insertion.

Philip Blakely (LSC) Advanced C++ 48 / 217

Containers

Outline

6 For-loops

7 Exceptions

8 Move Optimizations

9 Containers

Philip Blakely (LSC) Advanced C++ 49 / 217

Containers

Tuples

As well as a std::pair<A, B> we can now have a generic tuple of
values of different types Examples/tuple.C

std::tuple<int, double, std::string> a(42, 3.141, "Douglas");
std::cout << std::get<0>(a) << " "

<< std::get<1>(a) << " "
<< std::get<2>(a) << std::endl;

This can be used to return more than one value from a function:

std::tuple<int, double, std::string> getNameAndNumber(){
return std::make tuple(54, 1.0, "Arthur");

}
int id;
double real;
std::string name;
std::tie(id, real, name) = getNameAndNumber();

Philip Blakely (LSC) Advanced C++ 50 / 217

Containers

New containers: forward list

As an alternative to std::list, which is bidirectional,
forward list is singly-linked.

It is more space-efficient than std::list.

Philip Blakely (LSC) Advanced C++ 51 / 217

Containers

New containers: unordered map

Recall that a std::map<Key, Value> relies on an ordering on the
Key type.

This allows a new element to be inserted with complexity
O(log(N)) where N is the number of elements in the map.

It is likely that the map is implemented as a binary-tree so that
searching for the correct insertion point requires searching down
tree branches.

(There is the option to insert using an iterator as a hint where to
put the new element.)

What if you have a Key with no ordering?

C++11 now has a hashed map, called std::unordered map.

Philip Blakely (LSC) Advanced C++ 52 / 217

Containers

New containers: unordered map

std::unordered map<Key, Value, Hash> relies on the existence
of a hash function from Key to size t.

The cost of insertion is now O(1) (ish).

The third template parameter is a functional which defaults to
std::hash<Key> and is defined for all basic types, strings and a
few other types (not containers).

The hash functional maps a Key type to a size t and should map
different Keys to different values as far as possible.

If a hash-collision occurs, then a “bucket” is created to hold all
Keys that hash to this value.

A poor hash function can therefore reduce the efficiency of a
std::unordered map to have O(N) complexity for insertion if
many hash-collisions occur.

Philip Blakely (LSC) Advanced C++ 53 / 217

Containers

Creating a new hash functional

Suppose we have a 2D coordinate type (harder to create an ordering)

struct Coord{
Coord(int i, int j) : x(i), y(j){ }
bool operator==(const Coord& b)const{
return (x == b.x) && (y == b.y);

}
int x;
int y;

};

Create a functional:

struct hashCoord{
size t operator()(const Coord& a)const{
return std::hash<int>()(a.x) ˆ std::hash<int>()(a.y);

}
};

Note that std::hash<int> is a type, so std::hash<int>() is an
object of that type, which has a function operator()(int)

Philip Blakely (LSC) Advanced C++ 54 / 217

Containers

Creating a new hash functional

The ^ bitwise exclusive OR operator ensures that the results of
the underlying hash functions are combined so as to give a result
which is also size t.

Now we can use the Coord as a key as follows:

std::unordered map<Coord, double, hashCoord> cellValues;
Coord a(1,3);
cellValues[a] = 3.0;

See Examples/unordered map.C

Philip Blakely (LSC) Advanced C++ 55 / 217

Containers

New containers: unordered map

There are other related new containers:

std::unordered set
std::unordered multiset
std::unordered multimap

These may be more or less useful depending on what algorithm
you are implementing.

I advise checking the complexity of various operations on the
containers before using them.

Philip Blakely (LSC) Advanced C++ 56 / 217

Containers

New containers: array

C++11 now has a fixed-size array type, essentially containing a
C-like array:

#include <array>
std::array<double, 5> a{1,4,9,16,25};

a[2] = 36;
std::sort(a.begin(), a.end());

for(size t i=0 ; i < a.size() ; i++){
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}

Importantly, this does not decay to a double* when being passed
to a function.

See Examples/array.C

Note that the initializer above is not an std::initializer list

but aggregate initialization.

Philip Blakely (LSC) Advanced C++ 57 / 217

Containers

Movement between containers

From C++17 it is possible to transfer elements from one container
to another:

std::map<std::string, int> map1;
std::map<std::string, int> map2;
map1.merge(map2);
map2.insert(map1.extract("Arthur"));

This moves all elements from map2 into map1, and then moves
element “Arthur” from map1 into map2.

This kind of operation is available on the other *map containers.

See Examples/container transfer.C for full code.

Philip Blakely (LSC) Advanced C++ 58 / 217

Containers

Allocators

The various STL containers all have an Allocator template
parameter.
By default this is the std::allocator<T> which has essentially
two methods:

std::allocator<double> a;
int ∗ data = a.allocate(1000);
a.deallocate(data);

Other methods do exist but are deprecated by C++17 (and
removed in C++20).
This seems pointless; can’t we just use new and delete?
Yes, but consider a std::map that is frequently updated; elements
being added and removed.
This results in 1,000s of calls to new, one for each element. This
can be slow.
It might be more efficient if you could allocate a large block of
memory and the std::map used/reused small blocks from a single
block of memory.
Philip Blakely (LSC) Advanced C++ 59 / 217

Containers

Allocators

Writing your own efficient allocator requires some effort, and you
need to consider whether contiguous chunks of memory are more
important, or many smaller ones.

The Boost Pool library helps in this case, and you can use:

std::vector<double, boost::pool allocator<double> > myVec;
std::list<int, boost::fast pool allocator<int> > myList;

These containers cannot be converted automatically to ones using
the default allocator, so you need to use typedef to shorten
definitions and reduce the number of places the allocator is
specified.

As with all optimizations: only do this if you find that this is your
bottleneck.

Changing your data-structure may be more profitable.

Philip Blakely (LSC) Advanced C++ 60 / 217

