Part V

C++11/14/17

Philip Blakely (LSC)

Variadics

Outline

@ Variadics

Philip Blakely (LSC) Advanced C++

Variadics

Variadic macros

@ Macros can now have a variable number of arguments in C++11:
#define PRINT (X, ...) printf(X "\n", __.VA_ARGS_.);

int main(void){
PRINT ("Error: %s", "Message");
PRINT ("Error: %s %d", "Message", 42);

}

@ __VA_ARGS__ is replaced by all the remaining parameters to the
macro.

@ This is not a good example of its use, and I am unable to think of
one. This suggests you should not use it...

@ See Examples/variable macros.C

Philip Blakely (LSC) Advanced C++ 98 / 217

Variadics

Variadic templates

o Templates can now have a variable number of template parameters
void print () {}

template<typename T, typename... Args>

void print (const T& t, Args... a){
std::cout << t << std::endl;
print(a...);

}

int main(void){
print ("Hello", 10.9, 11lu);

}

@ The ... syntax indicates that the parameter pack Args is
expanded.

@ The ... syntax can be used wherever a list of elements is required.

Philip Blakely (LSC) Advanced C++ 99 / 217

Variadics

Variadic templates...

Example use of variadic templates to create custom version of

std: :tuple:
template<typename... Params> struct Tuple;
template<typename T, typename... OtherParams>
struct Tuple<T, OtherParams...> : Tuple<OtherParams...>{
Tuple (T p, OtherParams... o) : Tuple<OtherParams...>(o...),
param (p) {

template<int N>

typename std::enable if<(N > 0), typename EltType<(N>0) 2
N—1 : 0, OtherParams...>::type>::type get ()const{
return Tuple<OtherParams...>::template get<N—1>();

template<int N>
typename std::enable_ if<N == 0, T>::type

get () const{
return param;

T param;

Philip Blakely (LSC) Advanced C++ 100 / 217

Variadics

Variadic templates...

o Extraction of the N’th type from a parameter pack as used in the
previous slide:

template<int N, typename... Elts> struct EltType;

template<int N, typename T, typename... Elts>
struct EltType<N, T, Elts...>{
typedef typename EltType<N—1, Elts...>::type type;

¥

//! Recursion—ending specialisation
template<typename T, typename... Elts>
struct EltType<0, T, Elts...>{
typedef T type;

}i

@ See Examples/variadic_tuple.C.

@ Use t.get<1>() to access element 1 of the tuple.

Philip Blakely (LSC) Advanced C++ 101 / 217

Variadics

Variadic templates...

@ As a further example of the power of parameter packs:

template<typename F, typename... Args>

double fIncreased(F f, Args... x){
return £ ((x+1)...);

}

std::cout << "f(4,5,6) = " << fIncreased(f, 3,4,5) << std::endl;

o The (x+1)... translates into x+1 for each of Args.

@ See Examples/variadic_templates.C

Philip Blakely (LSC) Advanced C++ 102 / 217

Variadics

Folding expressions

@ The following works from C++17 only
@ When using template parameter packs, you may wish to apply an
operation to combine all elements into one:

template<typename... T>

int sum(T... b){
return (b + ...);

}
produces a function that sums all values passed to it, and is known
as a unary right fold.

@ Most operators can be used here, and can have initial left or right

operands:

template<typename... T>

int startMinusSum(int a, T... b){
return (a — ... — b);

}
and this is known as a binary left fold.

Philip Blakely (LSC) Advanced C++ 103 / 217

Variadics

Folding expressions ctd

@ However:

template<typename... T>
bool equal(T... b){
return (b == ...);

does not do what you want: bl == b2 == b3 is unlikely to be
useful.

e In fact gcc produces an error with this case due to lack of
parentheses.

@ In this case, the answer is to write:

template<typename S, typename... T>
bool equal2(s a, T... b){
return ((a == b) && ...);

@ See Examples/folding expr.C for full code.

Philip Blakely (LSC) Advanced C++ 104 / 217

Variadics

Empty folding expressions

What happens if there are no arguments to a folding expression?
For && the answer is true
For || the answer is false

For , the answer is void ()

For example, an empty sum is undefined. The answer is not zero,
as for non-numeric arguments, the identity element for addition
may not be equivalent to zero.

Similarly, an empty multiplication is not 1.

Philip Blakely (LSC) Advanced C++ 105 / 217

Non-class Templating

Outline

@ Non-class Templating

Philip Blakely (LSC) Advanced C++

Non-class Templating

Templated aliases

o In C++11, typedefs can be templated:
template<typename T>
using ListConstIter = typename std::list<T>::const_iterator;

@ This provides a shorthand for a constant iterator over a list of
elements of type T.

std::list<int> a{0,6,9,13,—14};
ListConstIter<int> b = a.begin();

o This particular example is probably better done with auto, but
the principle stands.

@ See templated_typedef.C.

Philip Blakely (LSC) Advanced C++ 107 / 217

Non-class Templating

Templated variables

o As well as templated functions, classes, and types, C++14 also
allows templated variables.

@ This may seem odd at first; surely the value of a variable defines
its type, and templating it is worthless?

o However:

template<typename T> T epsilon = 0;
template<> float epsilon<float> = le—6;
template<> double epsilon<double> = le—12;

could be useful, instead of using something dependent on
std: :numeric_limits
@ See Examples/templated_variables.C

@ Other examples include a Matrix<T>-type with an identity defined
for a number of types T.

Philip Blakely (LSC) Advanced C++ 108 / 217

Part VI

C++14 specific

Philip Blakely (LSC) Advanced C++ 109 / 217

Numeric literals

@ Binary literals may now be specified as:
int answer = 0b101010; // answer = 42

@ Groups of digits can be separated using ’:
int billion = 170007000"000;

This is for readability purposes only (and may not play well with
automatic highlighting in your text-editor).

@ See Examples/literals.C

Philip Blakely (LSC) Advanced C++ 110 / 217

Attributes

o Functions, variables, types, and other C++ constructs are
permitted to have attributes; extra information not inherent in
their definition.

o Many compilers support their own attributes, typically providing
hints that may improve performance.

o As of C++14, the only attributes allowed are:

o [[noreturn]] For functions that never return
o [[deprecated("reason")]] (where “reason” may be omitted) -
provides a compile-time warning that a function is deprecated

o For example, this may allow the compiler to make certain
optimizations.

[[noreturn]]
void abort (const std::string& msg, const std::string& file, int

line){
std::cout << "Abort: " << file << ":" << line << std::endl;
std::cout << "Due to: " << msg << std::endl;
exit (1);

}

Philip Blakely (LSC) Advanced C++ 111 / 217

Attributes ctd

@ Or, for functions you want to discourage yourself or others from

using:
[[deprecated ("Use the more general iterator form.")]]
void sort (const std::vector<int>& a)

will print a message at compile time, if the function is used:

void sort (std::vector<int>&) is deprecated:
Use the more general iterator form

@ See Examples/attributes.C for full code.

Philip Blakely (LSC) Advanced C++ 112 / 217

Other attributes

o Compilers may also support their own attributes.
@ Those supported by gcc include (in any C++ version):
o [[gnu::aligned(32)]] to align x on a memory address a multiple

of 32 bytes.
o int myTmp [[gnu::unused]]; to suppress a compiler warning that

a variable is unused.

Philip Blakely (LSC) Advanced C++ 113 / 217

Return type deduction

@ The auto keyword in C++11 only applied to variables and to
functions with decltype.

o C++14 allows the return type of any function to be deduced
automatically:

template<typename T, typename S>

auto product (T t, S s){
return t * s;

}

@ If used within a header file, the function definition must be seen
before it is used (to deduce the return type).

Philip Blakely (LSC) Advanced C++ 114 / 217

Return type deduction ctd

@ Also, since C++ parsing is top-to-bottom, recursive functions must
be arranged carefully:

auto factorial(int i){
if (i<= 1){
// Return type deduced to be ’int’ here.
return 1;

}
else{

return factorial (i—1) *x i;
}

works, but reversing the if statement fails because the return type
must be deduced first.

@ See Examples/return_type_deduction.C for details.

o I suggest that auto is used sparingly, and only to avoid long
typenames, or typenames deduced from template-constructs.

@ In theory almost everything could have auto, but that way
Python/JavaScript/lack of clarity lies...

Philip Blakely (LSC) Advanced C++ 115 / 217

auto lambda parameters

@ In C++11 lambda function parameters had to have an explicit
type; now they can have auto type:

int s = 5;
std::for_each (data.begin(), data.end(),
[s] (auto x){return x + s;});

so that we do not need to explicitly find the value_type of data.

@ Also, lambda functions without local capture can be converted to
C-style function pointers:

auto £ = [](auto x){return x + 5;};
int (xaddb5) (int) = f;
float (xadd5f) (float) = £f;

@ giving two concrete function pointers that add 5 to either an
integer or a float.

@ See Examples/lambda_14.C for full example.

Philip Blakely (LSC) Advanced C++ 116 / 217

Member and aggregate initialization

e If a class/struct is initialized using an initializer list, then values
defined in the class are used if the aggregate does not contain
enough:

struct X{ int a; int b; int c = 9; };
x x = {2, 3};

@ The above will fail to compile in C++11 (¢ cannot be initialized),
but will succeed in C++14 (c = 9).

@ Of course, X y; will succeed in any C++ version.

Philip Blakely (LSC) Advanced C++ 117 / 217

Part VII

C++17 specific

Philip Blakely (LSC) Advanced C++ 118 / 217

Minor changes

Outline

@ Minor changes

Philip Blakely (LSC) Advanced C++ 119 / 217

Minor changes

Preprocessor

o Trigraphs are no longer allowed. For example, 77= was equivalent
to # in earlier C++ standards. This was for very old small
keyboards without certain characters.

@ The __has_include expression is supported to test whether a
particular header file is available within the header search path:

#if __has_include (<qgt4/Qt/gconfig.h>)
#define HAVE_QT
#endif

o I would suggest that a proper appreciation of autoconf,
GNUMake, CMake, and similar tools would be of more use.

Philip Blakely (LSC) Advanced C++ 120 / 217

Minor changes

Minor clean-ups

@ The operator ++ on a boolean type no longer exists.

@ The register keyword is now removed; you can use it as a
variable name. In C it indicates that a variable should be put in a
CPU register. In practice it now makes little difference to
performance in C anyway.

Philip Blakely (LSC) Advanced C++ 121 / 217

Minor changes

static_assert

The following minor modification of static_assert is now supported:

template<int D>

class A{
static_assert (D >= 0);

}i

L.e. without the human-readable message required in C++11.

Philip Blakely (LSC) Advanced C++ 122 / 217

Minor changes

Hexadecimal floating point literals

For some purposes, it is useful to specify floating point numbers
w.r.t. base 2:

const double quarter = 0x1.0p—2;
double three_eighths = 0x0.cp—1;

The first should be obvious; the second expands in binary as
(3 + 1) x 27! since 0Oxc = 1100b.

std::cout << std::hexfloat <<
std::numeric_limits<double>::epsilon ()

displays 0x1p-52 since double-precision has machine epsilon 2772,

Philip Blakely (LSC) Advanced C++ 123 / 217

Minor changes

byte type

@ In order to allow clearer distinction between numbers for
arithmetic or text (char, unsigned char) and pure memory
storage, C++17 introduces std: :byte.

o It is defined as:

enum class byte : unsigned char {};
@ and can be used as:
std::byte a{0x49};

std::vector<std::byte> v (10, a);
std::cout << "v[3]=" << std::hex << (int)v[3] << std::endl;

@ Note the casting required not to print as a text character.

Philip Blakely (LSC) Advanced C++ 124 / 217

Attributes

Outline

@ Attributes

Philip Blakely (LSC) Advanced C++ 125 / 217

Attributes

Attributes

@ C++17 introduces further attributes:

o [[fallthroughl] - suppress potential compiler warning when
case statements allow fall-through.

int input;
switch (input){
case 1:
case 3:
std::cout << "Input is less than 4" << std::endl;
[[fallthrough]];
case 5:
std::cout << "Input is odd" << std::endl;
break;

}

o Without the attribute, this could cause the compiler to produce a
warning or error.

Philip Blakely (LSC) Advanced C++ 126 / 217

Attributes

attributes

@ [[nodiscard]] - Causes compiler to give warning if a value
returned from a function is ignored.

o [[maybe_unused]] - Marks a variable or function parameter as
unused, which allows compiler to suppress a warning about unused

variables.
template<typename T>
[[nodiscard]] bool sendMsg([[maybe_unused]] const Tx src,
[[maybe_unused]] size_t n){

return false;

}

@ where the sendMsg function returns success or failure error code.

@ We could leave the variables un-named, but what if we want to
document them (e.g. with Doxygen)?

@ See Examples/attributes_17.C for full code.

@ Also note that attributes can be applied to namespaces and
enumerators, but none are given in the standard.

Philip Blakely (LSC) Advanced C++ 127 / 217

Attributes

attributes

@ Multiple attributes in the same namespace can be specified as:

int myTmp [[using gnu: unused, aligned(32) 11;

instead of

int myTmp [[gnu::unused, gnu::aligned(32) 11];

Philip Blakely (LSC) Advanced C++ 128 / 217

Attributes

Construction of aggregates

o C++ has always allowed aggregate initialization:

struct S{int s; double f;};

S a{42, 3.142};

e However, only from C++17 is initialization of base-classes using
this approach allowed:

struct Name : S{ std::string n; };

Name n{ {10, 2.3}, "Ford"};

@ The first element corresponds to the initialization of the base-class
S. The second corresponds to the element n.

@ Multiple base-classes are supported, in order:

struct Nested : S, Name { char a; };

Nested p{ {10, 3.2}, { {9, 1.2}, "Frankie" }, 'b’ };

o Note that virtual base-classes are not allowed to be initialized in
this way.

@ See Examples/aggregate_init.C for full code.

Philip Blakely (LSC) Advanced C++ 129 / 217

Attributes

inline variables

@ Now allowed to have multiple definitions of extern variables, so
long as they have inline, and there is a definition of the variable
in each translation unit in which it is used.

@ Similar to inline functions

Philip Blakely (LSC) Advanced C++ 130 / 217

Extension of if/switch

Outline

@ Extension of if/switch

Philip Blakely (LSC) Advanced C++ 131 / 217

Extension of if/switch

New versions of if and switch

@ In some cases, you may have an if or switch statement that
depends on a variable whose value is not needed outside the test:

auto iter = myMap.find(10);

if(iter != myMap.end()){
return iter—>second;
}
else{
std::cout << "Key 10 not found" << std::endl;
}
@ This can now be rewritten:
if(auto iter = myMap.find(10); iter != myMap.end()){
return iter—>second;
}
else{
std::cout << "Key 10 not found" << std::endl;
}

Philip Blakely (LSC) Advanced C++ 132 / 217

Extension of if/switch

New versions of if and switch

@ The advantage is that iter does not leak into the surrounding
scope. It is not needed outside of the if scope.

@ This could be more important if initialization of iter required
some form of resource allocation that should be released after the
if.

o Similarly, switch(init ; testvalue) exists.

@ See Examples/if_17.C for full code.

Philip Blakely (LSC) Advanced C++ 133 / 217

