
Part V

C++11/14/17

Philip Blakely (LSC) Advanced C++ 96 / 217

Variadics

Outline

16 Variadics

17 Non-class Templating

Philip Blakely (LSC) Advanced C++ 97 / 217

Variadics

Variadic macros

Macros can now have a variable number of arguments in C++11:

#define PRINT(X, ...) printf(X "\n", VA ARGS);

int main(void){
PRINT("Error: %s", "Message");
PRINT("Error: %s %d", "Message", 42);

}

VA ARGS is replaced by all the remaining parameters to the
macro.

This is not a good example of its use, and I am unable to think of
one. This suggests you should not use it...

See Examples/variable macros.C

Philip Blakely (LSC) Advanced C++ 98 / 217

Variadics

Variadic templates

Templates can now have a variable number of template parameters

void print(){}

template<typename T, typename... Args>
void print(const T& t, Args... a){
std::cout << t << std::endl;
print(a...);

}
int main(void){
print("Hello", 10.9, 11u);

}

The ... syntax indicates that the parameter pack Args is
expanded.

The ... syntax can be used wherever a list of elements is required.

Philip Blakely (LSC) Advanced C++ 99 / 217

Variadics

Variadic templates...
Example use of variadic templates to create custom version of
std::tuple:
template<typename... Params> struct Tuple;

template<typename T, typename... OtherParams>
struct Tuple<T, OtherParams...> : Tuple<OtherParams...>{

Tuple(T p, OtherParams... o) : Tuple<OtherParams...>(o...),
param(p){
}

template<int N>
typename std::enable if<(N > 0), typename EltType<(N>0) ?
N−1 : 0, OtherParams...>::type>::type get()const{
return Tuple<OtherParams...>::template get<N−1>();

}

template<int N>
typename std::enable if<N == 0, T>::type
get()const{
return param;

}
T param;

};
Philip Blakely (LSC) Advanced C++ 100 / 217

Variadics

Variadic templates...

Extraction of the N’th type from a parameter pack as used in the
previous slide:

template<int N, typename... Elts> struct EltType;

template<int N, typename T, typename... Elts>
struct EltType<N, T, Elts...>{
typedef typename EltType<N−1, Elts...>::type type;

};

//! Recursion−ending specialisation
template<typename T, typename... Elts>
struct EltType<0, T, Elts...>{
typedef T type;

};

See Examples/variadic tuple.C.

Use t.get<1>() to access element 1 of the tuple.

Philip Blakely (LSC) Advanced C++ 101 / 217

Variadics

Variadic templates...

As a further example of the power of parameter packs:

template<typename F, typename... Args>
double fIncreased(F f, Args... x){
return f((x+1)...);

}

std::cout << "f(4,5,6) = " << fIncreased(f, 3,4,5) << std::endl;

The (x+1)... translates into x+1 for each of Args.

See Examples/variadic templates.C

Philip Blakely (LSC) Advanced C++ 102 / 217

Variadics

Folding expressions

The following works from C++17 only

When using template parameter packs, you may wish to apply an
operation to combine all elements into one:

template<typename... T>
int sum(T... b){

return (b + ...);
}

produces a function that sums all values passed to it, and is known
as a unary right fold.

Most operators can be used here, and can have initial left or right
operands:

template<typename... T>
int startMinusSum(int a, T... b){

return (a − ... − b);
}

and this is known as a binary left fold.

Philip Blakely (LSC) Advanced C++ 103 / 217

Variadics

Folding expressions ctd

However:

template<typename... T>
bool equal(T... b){

return (b == ...);
}

does not do what you want: b1 == b2 == b3 is unlikely to be
useful.

In fact gcc produces an error with this case due to lack of
parentheses.

In this case, the answer is to write:

template<typename S, typename... T>
bool equal2(S a, T... b){

return ((a == b) && ...);
}

See Examples/folding expr.C for full code.

Philip Blakely (LSC) Advanced C++ 104 / 217

Variadics

Empty folding expressions

What happens if there are no arguments to a folding expression?

For && the answer is true

For || the answer is false

For , the answer is void()

For example, an empty sum is undefined. The answer is not zero,
as for non-numeric arguments, the identity element for addition
may not be equivalent to zero.

Similarly, an empty multiplication is not 1.

Philip Blakely (LSC) Advanced C++ 105 / 217

Non-class Templating

Outline

16 Variadics

17 Non-class Templating

Philip Blakely (LSC) Advanced C++ 106 / 217

Non-class Templating

Templated aliases

In C++11, typedefs can be templated:

template<typename T>
using ListConstIter = typename std::list<T>::const iterator;

This provides a shorthand for a constant iterator over a list of
elements of type T.

std::list<int> a{0,6,9,13,−14};
ListConstIter<int> b = a.begin();

This particular example is probably better done with auto, but
the principle stands.

See templated typedef.C.

Philip Blakely (LSC) Advanced C++ 107 / 217

Non-class Templating

Templated variables

As well as templated functions, classes, and types, C++14 also
allows templated variables.

This may seem odd at first; surely the value of a variable defines
its type, and templating it is worthless?

However:

template<typename T> T epsilon = 0;
template<> float epsilon<float> = 1e−6;
template<> double epsilon<double> = 1e−12;

could be useful, instead of using something dependent on
std::numeric limits

See Examples/templated variables.C

Other examples include a Matrix<T>-type with an identity defined
for a number of types T.

Philip Blakely (LSC) Advanced C++ 108 / 217

Part VI

C++14 specific

Philip Blakely (LSC) Advanced C++ 109 / 217

Numeric literals

Binary literals may now be specified as:

int answer = 0b101010; // answer = 42

Groups of digits can be separated using ’:

int billion = 1’000’000’000;

This is for readability purposes only (and may not play well with
automatic highlighting in your text-editor).

See Examples/literals.C

Philip Blakely (LSC) Advanced C++ 110 / 217

Attributes

Functions, variables, types, and other C++ constructs are
permitted to have attributes; extra information not inherent in
their definition.
Many compilers support their own attributes, typically providing
hints that may improve performance.
As of C++14, the only attributes allowed are:

[[noreturn]] For functions that never return
[[deprecated("reason")]] (where “reason” may be omitted) -
provides a compile-time warning that a function is deprecated

For example, this may allow the compiler to make certain
optimizations.

[[noreturn]]
void abort(const std::string& msg, const std::string& file, int

line){
std::cout << "Abort: " << file << ":" << line << std::endl;
std::cout << "Due to: " << msg << std::endl;
exit(1);

}

[[carries dependency]] Related to memory access orderingPhilip Blakely (LSC) Advanced C++ 111 / 217

Attributes ctd

Or, for functions you want to discourage yourself or others from
using:

[[deprecated("Use the more general iterator form.")]]
void sort(const std::vector<int>& a)
{
}

will print a message at compile time, if the function is used:

void sort(std::vector<int>&) is deprecated:
Use the more general iterator form

See Examples/attributes.C for full code.

Philip Blakely (LSC) Advanced C++ 112 / 217

Other attributes

Compilers may also support their own attributes.

Those supported by gcc include (in any C++ version):

[[gnu::aligned(32)]] to align x on a memory address a multiple
of 32 bytes.
int myTmp [[gnu::unused]]; to suppress a compiler warning that
a variable is unused.

Philip Blakely (LSC) Advanced C++ 113 / 217

Return type deduction

The auto keyword in C++11 only applied to variables and to
functions with decltype.

C++14 allows the return type of any function to be deduced
automatically:

template<typename T, typename S>
auto product(T t, S s){
return t ∗ s;

}

If used within a header file, the function definition must be seen
before it is used (to deduce the return type).

Philip Blakely (LSC) Advanced C++ 114 / 217

Return type deduction ctd

Also, since C++ parsing is top-to-bottom, recursive functions must
be arranged carefully:

auto factorial(int i){
if(i<= 1){
// Return type deduced to be ’int’ here.
return 1;

}
else{
return factorial(i−1) ∗ i;

}
}

works, but reversing the if statement fails because the return type
must be deduced first.
See Examples/return type deduction.C for details.
I suggest that auto is used sparingly, and only to avoid long
typenames, or typenames deduced from template-constructs.
In theory almost everything could have auto, but that way
Python/JavaScript/lack of clarity lies...
Philip Blakely (LSC) Advanced C++ 115 / 217

auto lambda parameters

In C++11 lambda function parameters had to have an explicit
type; now they can have auto type:

int s = 5;
std::for each(data.begin(), data.end(),

[s](auto x){return x + s;});

so that we do not need to explicitly find the value type of data.

Also, lambda functions without local capture can be converted to
C-style function pointers:

auto f = [](auto x){return x + 5;};
int (∗add5)(int) = f;
float (∗add5f)(float) = f;

giving two concrete function pointers that add 5 to either an
integer or a float.

See Examples/lambda 14.C for full example.

Philip Blakely (LSC) Advanced C++ 116 / 217

Member and aggregate initialization

If a class/struct is initialized using an initializer list, then values
defined in the class are used if the aggregate does not contain
enough:

struct X{ int a; int b; int c = 9; };
X x = {2, 3};

The above will fail to compile in C++11 (c cannot be initialized),
but will succeed in C++14 (c = 9).

Of course, X y; will succeed in any C++ version.

Philip Blakely (LSC) Advanced C++ 117 / 217

Part VII

C++17 specific

Philip Blakely (LSC) Advanced C++ 118 / 217

Minor changes

Outline

18 Minor changes

19 Attributes

20 Extension of if/switch

Philip Blakely (LSC) Advanced C++ 119 / 217

Minor changes

Preprocessor

Trigraphs are no longer allowed. For example, ??= was equivalent
to # in earlier C++ standards. This was for very old small
keyboards without certain characters.

The has include expression is supported to test whether a
particular header file is available within the header search path:

#if has include(<qt4/Qt/qconfig.h>)
#define HAVE QT
#endif

I would suggest that a proper appreciation of autoconf,
GNUMake, CMake, and similar tools would be of more use.

Philip Blakely (LSC) Advanced C++ 120 / 217

Minor changes

Minor clean-ups

The operator ++ on a boolean type no longer exists.

The register keyword is now removed; you can use it as a
variable name. In C it indicates that a variable should be put in a
CPU register. In practice it now makes little difference to
performance in C anyway.

Philip Blakely (LSC) Advanced C++ 121 / 217

Minor changes

static assert

The following minor modification of static assert is now supported:

template<int D>
class A{

static assert(D >= 0);
};

I.e. without the human-readable message required in C++11.

Philip Blakely (LSC) Advanced C++ 122 / 217

Minor changes

Hexadecimal floating point literals

For some purposes, it is useful to specify floating point numbers
w.r.t. base 2:

const double quarter = 0x1.0p−2;
double three eighths = 0x0.cp−1;

The first should be obvious; the second expands in binary as
(1

2 + 1
4)× 2−1 since 0xc = 1100b.

std::cout << std::hexfloat <<
std::numeric limits<double>::epsilon()

displays 0x1p-52 since double-precision has machine epsilon 2−52.

Philip Blakely (LSC) Advanced C++ 123 / 217

Minor changes

byte type

In order to allow clearer distinction between numbers for
arithmetic or text (char, unsigned char) and pure memory
storage, C++17 introduces std::byte.

It is defined as:

enum class byte : unsigned char {};

and can be used as:

std::byte a{0x49};
std::vector<std::byte> v(10, a);
std::cout << "v[3]=" << std::hex << (int)v[3] << std::endl;

Note the casting required not to print as a text character.

Philip Blakely (LSC) Advanced C++ 124 / 217

Attributes

Outline

18 Minor changes

19 Attributes

20 Extension of if/switch

Philip Blakely (LSC) Advanced C++ 125 / 217

Attributes

Attributes

C++17 introduces further attributes:

[[fallthrough]] - suppress potential compiler warning when
case statements allow fall-through.

int input;
switch(input){
case 1:
case 3:
std::cout << "Input is less than 4" << std::endl;
[[fallthrough]];

case 5:
std::cout << "Input is odd" << std::endl;
break;

}

Without the attribute, this could cause the compiler to produce a
warning or error.

Philip Blakely (LSC) Advanced C++ 126 / 217

Attributes

attributes

[[nodiscard]] - Causes compiler to give warning if a value
returned from a function is ignored.

[[maybe unused]] - Marks a variable or function parameter as
unused, which allows compiler to suppress a warning about unused
variables.

template<typename T>
[[nodiscard]] bool sendMsg([[maybe unused]] const T∗ src,

[[maybe unused]] size t n){
return false;

}

where the sendMsg function returns success or failure error code.

We could leave the variables un-named, but what if we want to
document them (e.g. with Doxygen)?

See Examples/attributes 17.C for full code.

Also note that attributes can be applied to namespaces and
enumerators, but none are given in the standard.

Philip Blakely (LSC) Advanced C++ 127 / 217

Attributes

attributes

Multiple attributes in the same namespace can be specified as:

int myTmp [[using gnu: unused, aligned(32)]];

instead of

int myTmp [[gnu::unused, gnu::aligned(32)]];

Philip Blakely (LSC) Advanced C++ 128 / 217

Attributes

Construction of aggregates

C++ has always allowed aggregate initialization:
struct S{int s; double f;};
S a{42, 3.142};

However, only from C++17 is initialization of base-classes using
this approach allowed:

struct Name : S{ std::string n; };
Name n{ {10, 2.3}, "Ford"};

The first element corresponds to the initialization of the base-class
S. The second corresponds to the element n.

Multiple base-classes are supported, in order:
struct Nested : S, Name { char a; };
Nested p{ {10, 3.2}, { {9, 1.2}, "Frankie" }, ’b’ };

Note that virtual base-classes are not allowed to be initialized in
this way.

See Examples/aggregate init.C for full code.

Philip Blakely (LSC) Advanced C++ 129 / 217

Attributes

inline variables

Now allowed to have multiple definitions of extern variables, so
long as they have inline, and there is a definition of the variable
in each translation unit in which it is used.

Similar to inline functions

Philip Blakely (LSC) Advanced C++ 130 / 217

Extension of if/switch

Outline

18 Minor changes

19 Attributes

20 Extension of if/switch

Philip Blakely (LSC) Advanced C++ 131 / 217

Extension of if/switch

New versions of if and switch

In some cases, you may have an if or switch statement that
depends on a variable whose value is not needed outside the test:

auto iter = myMap.find(10);
if(iter != myMap.end()){
return iter−>second;

}
else{
std::cout << "Key 10 not found" << std::endl;

}

This can now be rewritten:

if(auto iter = myMap.find(10); iter != myMap.end()){
return iter−>second;

}
else{
std::cout << "Key 10 not found" << std::endl;

}

Philip Blakely (LSC) Advanced C++ 132 / 217

Extension of if/switch

New versions of if and switch

The advantage is that iter does not leak into the surrounding
scope. It is not needed outside of the if scope.

This could be more important if initialization of iter required
some form of resource allocation that should be released after the
if.

Similarly, switch(init ; testvalue) exists.

See Examples/if 17.C for full code.

Philip Blakely (LSC) Advanced C++ 133 / 217

