
Writing and compiling a CUDA code

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Writing CUDA code 1 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 2 / 70



The CUDA language

If we want fast code, we (unfortunately) need to know more-or-less
exactly what the hardware is doing - even more so than on CPU.

So need a low-level programming language

C, C++ or Fortran would be suitable

C++ used more these days (for better or worse)

CUDA is essentially C++ with extensions specific to CUDA
hardware.

CUDA Fortran compiler exists
https://developer.nvidia.com/cuda-fortran

Fortran may be more amenable to CUDA optimization, but I have
not tested this.

Philip Blakely (LSC) Writing CUDA code 3 / 70

https://developer.nvidia.com/cuda-fortran


The CUDA language

CUDA is very similar to C++, with a few additions

Allows access to lightweight threading model via language
extensions

Functions must be designated as CUDA functions to run on the
GPU

All the speed and potential pitfalls of C++ are available

Segmentation faults can be more dangerous on a GPU - usually
because these will not be caught and will corrupt data rather than
causing execution failure.

Philip Blakely (LSC) Writing CUDA code 4 / 70



Runtime or Driver API?

Two APIs available: Runtime and Driver

Both APIs are capable of roughly the same things:

Provide information about device parameters to host
Provide access to device memory from host
Allow host to set up and execute kernels

Driver API more geared towards pre-compiled function libraries
loaded at run-time (execution setup more complex)

Runtime API more useful for your own functions

For more information, see Reference Manual
We concentrate on the Runtime API here.

Philip Blakely (LSC) Writing CUDA code 5 / 70



Vector addition

As a first example of using CUDA, we shall look at a program which

takes two vectors on the CPU

passes them to the GPU

adds them on the GPU

passes them back to the CPU

outputs them on the CPU.

The full code is in Examples/addVectors.cu

Starts with

#include <iostream>
#include <cuda.h>

Philip Blakely (LSC) Writing CUDA code 6 / 70



Vector addition - Memory

Memory is best allocated on the GPU from the CPU

Dynamic memory allocation is possible from the GPU, but not
advisable for performance reasons.

Allocating Memory

float *a, *b, *c;
cudaMalloc((void **) &a, N*sizeof(float));

sets a equal to a memory address on the GPU that is the start of a
block of memory of size N*sizeof(float) bytes.
Note that we pass a pointer to a to cudaMalloc, and that a exists on
the CPU.
General form:

cudaError t cudaMalloc (void **devPtr, size t size)

Philip Blakely (LSC) Writing CUDA code 7 / 70



Vector addition - Copying data

On CPU, allocate space as normal:

float *aHost = new float[N];

In order to copy data from aHost (a pointer to data on the CPU)
to a (a pointer to data on the GPU):

Memory copy

cudaMemcpy(a, aHost, N*sizeof(float),
cudaMemcpyHostToDevice);

copies N*sizeof(float) bytes of data from aHost to a.

General form

cudaError t cudaMemcpy (void *dst, const void *src, size t
count, enum cudaMemcpyKind kind)

Philip Blakely (LSC) Writing CUDA code 8 / 70



Vector addition - Copying data

In order to copy data back from the GPU, use

cudaMemcpy(cHost, c, N*sizeof(float),
cudaMemcpyDeviceToHost);

It is also possible to copy between memory spaces on the device itself

GPU to GPU copy (called on the CPU)

cudaMemcpy(c, d, N*sizeof(float), cudaMemcpyDeviceToDevice);

Philip Blakely (LSC) Writing CUDA code 9 / 70



Vector addition - freeing memory

Freeing Memory

cudaFree(a);

releases the memory pointed to by a for later use by other cudaMalloc
calls.
General form:

cudaError t cudaFree (void *devPtr)

Philip Blakely (LSC) Writing CUDA code 10 / 70



Vector addition - kernel

global void add(float* a, float* b, float* c, int N)
{
int i = threadIdx.x;

if( i < N )
{
c[i] = a[i] + b[i];

}
}

Kernel designated by global keyword

Kernel must have void return type.

No direct return of information possible from kernels
(asynchronous execution)

Thread number given by the struct threadIdx (.x, .y, .z)

Executed on the GPU - pointers assumed to relate to GPU
memory.

Philip Blakely (LSC) Writing CUDA code 11 / 70



Vector addition - launching kernel

Kernel launches require thread-block and grid-dimension sizes to
be specified.

Recall that threads are arranged in blocks, and blocks are
arranged into a grid.

All thread-blocks in a grid have the same size.

Calling a simple kernel

const int N = 1024;

add<<<1, N>>>(a,b,c,N);

launches a single block of 1024 threads for the kernel with

threadIdx.x = 0, 1, . . . , 1023

First parameter is grid dimension, second is thread block
dimension. These can be chosen at run-time.

Philip Blakely (LSC) Writing CUDA code 12 / 70



Error handling

CUDA API and kernel calls are often asynchronous i.e. they return
immediately, potentially before the operation has completed.

This allows CPU and GPU execution to overlap for performance.

Therefore, if a function causes an error, the relevant error code
may be returned by a later function.

Error detection functions are:

cudaError t cudaGetLastError (void)

(returns last error, but also resets last error to cudaSuccess)

const char* cudaGetErrorString (cudaError t error)

returns a message string from an error code.

It is therefore useful to surround all CUDA function calls and
kernel calls by error checking using the above functions.

When debugging, remember that the error you see may have been
produced by a different function.

Philip Blakely (LSC) Writing CUDA code 13 / 70



Error handling

If your compute GPU also controls the display (as opposed to the more
usual compute-dedicated GPU):

Kernels are limited to 5s each (not a major restriction as you
usually run many kernels lasting for a few 10ms)

Segmentation faults/buffer overflows can corrupt your display

In extreme cases, display may freeze - a reboot is required

Debugging on the GPU is not possible with cuda-gdb

unless you switch to a virtual terminal (Ctrl+Alt+F<n>)

Philip Blakely (LSC) Writing CUDA code 14 / 70



Vector addition - Larger vectors

A thread block has a maximum size of 1024 threads and only uses
a single SM.

To use larger arrays (and more SMs), we must use a grid of
thread-blocks.

Use blockIdx containing index of current block within grid

Adding larger vectors

global void add(float* a, float* b, float* c, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if( i < N ) {
c[i] = a[i] + b[i];

}
}

and to call the kernel:

dim3 blocks((int)ceil(N / 1024.0));
add<<<blocks, 1024>>>(a,b,c,N);

Philip Blakely (LSC) Writing CUDA code 15 / 70



dim3

The variables threadIdx, blockIdx, blockDim are of type dim3

dim3 is a struct with 3 integer members:
(.x, .y, .z)

These variables are assigned values by the hardware at run-time,
and can therefore be used by your code.

A variable of type dim3 can be constructed with one, two, or three
integers; the remaining components default to 1.

Philip Blakely (LSC) Writing CUDA code 16 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 17 / 70



General thread blocks and grids

So far we’ve looked at 1D thread blocks and grids

To launch a 2D set of threads with all combinations of
threadIdx.x = 0, . . . , 31
threadIdx.y = 0, . . . , 31
blockIdx.x = 0, . . . , 255,
blockIdx.y = 0, . . . , 127:

General kernel launch

dim3 dimBlock(32,32,1);
dim3 dimGrid(256,128,1);
add<<<dimGrid, dimBlock>>>(a, b, c, N)

which would launch 32× 32× 256× 128 = 33, 554, 432 threads.

Every kernel will have variables:

dim3 blockDim(32,32,1);
dim3 gridDim(256,128,1);

Philip Blakely (LSC) Writing CUDA code 18 / 70



General thread blocks and grids

Running a 2D set of threads is simply a change in labelling by the
hardware; you could have performed the 1D → 2D mapping
yourself.

A similar approach will work for 3D set of threads.

It is up to you to decide how to divide work between threads and
blocks and what dimensions to give each.

A useful rule-of-thumb is: one grid-cell or matrix-element or
data-point per thread (at least initially).

For best performance, blocks should have power-of-two sizes, as
large as possible, for reasons that will become clear later.

If more threads are launched than grid-cells, then use if(i < N)

constructs to avoid out-of-bounds access.

Philip Blakely (LSC) Writing CUDA code 19 / 70



Thread blocks ctd

So, there are two forms of launching a kernel:

add<<<256, 1024>>>(a, b, c, N)

which is equivalent to the second form:

dim3 dimBlock(1024,1,1);
dim3 dimGrid(256,1,1);
add<<<dimGrid, dimBlock>>>(a, b, c, N)

or even:

dim3 dimBlock(1024);
dim3 dimGrid(256);
add<<<dimGrid, dimBlock>>>(a, b, c, N)

Philip Blakely (LSC) Writing CUDA code 20 / 70



Vector - complex function

For a more complicated function of two vectors, we may want to use a
separate function:

Discontinuous function

device float f(float a, float b){
if( a < 0 ){
return 2*a;

}
else{
return sin(a) + b;

}
}

global void g(...){
...
c[i] = f(a[i], b[i]);
...

}

Philip Blakely (LSC) Writing CUDA code 21 / 70



Device function calling

Functions to be run on the GPU must have a device or
global attribute.

Any depth of device functions can be called within a
global function.

A global function may be called from within other kernels,
using the kernel<<<...>>> syntax, but this is usually not
advisable.

A device function may only be called by a global or
device function (i.e. not from the CPU directly).

Philip Blakely (LSC) Writing CUDA code 22 / 70



Thread limits

Maximum 1024 threads per block

Maximum x/y dimension of block (in threads): 1024

Maximum z dimension of block: 64

Maximum 231 − 1 blocks in x/y/z grid dimension

For full details, see Appendix K of the CUDA C Programming Guide.

Philip Blakely (LSC) Writing CUDA code 23 / 70



Summary of Automatic variables

The following variables are available in any global and device

function:

gridDim (dim3)
Dimension of current grid

blockIdx (uint3)
Index of current thread block within grid

blockDim (dim3)
Dimension of current block

threadIdx (uint3)
Index of current thread within block

warpSize (int) Size of current warp (Always 32 on current
hardware)

All (except the last) are structs with three members: x, y, z.
Their members are generated by the hardware and are read-only.

Philip Blakely (LSC) Writing CUDA code 24 / 70



Vector addition - profiling

Asynchronous calls are problematic with timing CUDA programs.

clock() may not give fine enough timings.

We create events, and find the time between them afterwards.

cudaEvent t start, endMemcpy, endAdd, end;
cudaEventCreate(&start);

cudaEventRecord(start, 0);
add<<<1, N>>>(a,b,c,N);
cudaEventRecord(end, 0);

cudaEventSynchronize(end);

float memcpyTime, addTime, totalTime;
cudaEventElapsedTime(&totalTime, start, end);

cudaEventDestroy(start);

Gives time in milliseconds with resolution of 0.5 microseconds.
Imagine markers being placed in the stream of CUDA function-calls
and their actual times extracted later.

Philip Blakely (LSC) Writing CUDA code 25 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 26 / 70



CUDA extensions to C++ - Host functions

Host functions (on CPU)

All valid C++17 code should be permitted

Functions can be prefixed with host attribute (not required)

Callable on and by the host only.

For consistency, use nvcc for all compilation; host compiler is used
for host-only code.

Main CUDA API:

#include <cuda.h>
#include <driver types.h>
#include <cuda runtime api.h>

For extra CUDA types (int2, float3 etc.):

#include <vector types.h>
#include <vector functions.h>

You only need to use the CUDA compiler when

Defining device or global functions/variables

Calling kernels via kernel<<<N,M>>> syntax.
Philip Blakely (LSC) Writing CUDA code 27 / 70



CUDA extensions to C++ - Kernel functions

Kernel (global) functions

Kernel functions must be prefixed with global

Executed on device, callable from host or device.

Parameters cannot be references.

Parameters are passed via constant memory.

Must have void return type.

Call is asynchronous - returns before device has finished execution

Use cudaDeviceSynchronize() to ensure that all kernels on device
attached to current CPU-thread have finished execution.

Philip Blakely (LSC) Writing CUDA code 28 / 70



CUDA extensions to C++ - Device functions

Device functions

Have to prefix functions explicitly with device

All valid C++ code (except STL, exceptions, and run-time
type-information)

Most C++17 features supported.

Device code executed on device and callable from device only

Device functions may therefore make use of:

Function overloading

Default parameters

Namespaces

Function templates (effectively passing parameters at
compile-time)

Classes

Philip Blakely (LSC) Writing CUDA code 29 / 70



CUDA extensions to C++ - functions

Functions can be declared as both device and host and
are compiled for both CPU and GPU as necessary.

This is particularly useful for classes that are needed on CPU and
GPU, for example:

class Array{
public:

device host float& getElement(size t i);
};

In this case, host is necessary.

Philip Blakely (LSC) Writing CUDA code 30 / 70



CUDA extensions to C++ - variable attributes

Variables defined outside functions can have the following attributes:

device

Resides in global memory on device (kernels can read/write)

Lasts for whole application

Accessible on all device threads, and from host for read/write via
cudaMemcpyToSymbol()

constant

Resides in constant memory on device (kernels can only read)

Lasts for whole application

Accessible on all device threads, and from host for read/write via
cudaMemcpyToSymbol()

Philip Blakely (LSC) Writing CUDA code 31 / 70



CUDA extensions to C++ - variable attributes

Solver parameter

Header file:

constant int solver;

On host:

int solver CPU;
std::cin >> solver CPU;
cudaMemcpyToSymbol(solver, &solver CPU, sizeof(int), 0,

cudaMemcpyHostToDevice);

On device:

device void update(float* U, float dt){
switch(solver){
...
}

}

We are copying sizeof(int) bytes from the CPU to the GPU.

Philip Blakely (LSC) Writing CUDA code 32 / 70



CUDA extensions to C++ - variable attributes

Variables defined in device or global functions can have the
following attributes:

shared

Resides in shared memory of Streaming Multiprocessor on which
thread block is running

Lasts for lifetime of thread block

Shared/accessible between all threads in same block

Not accessible from other thread-blocks even in the same grid.

Need special commands to avoid race conditions on read/write.

volatile

Applies to a variable in global or shared memory

Forces explicit memory-read when variable is read

Otherwise compiler will assume that value doesn’t change between
reads - for optimization
Philip Blakely (LSC) Writing CUDA code 33 / 70



CUDA extensions - New vector types

Types such as int4, float3, double2 are available in both host
and device code

with elements x, y, z, w as appropriate

Can be constructed with e.g. make int2(1,2)

Elementwise arithmetic operators such as +,-,*,/ available

Only present for convenience - they do not translate to vectorized
instructions - which don’t exist on NVIDIA hardware.

(This is because all NVIDIA instructions are effectively very wide
vector-instructions that apply to all threads in a warp.)

Philip Blakely (LSC) Writing CUDA code 34 / 70



Laplace’s equation and memory bandwidth

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Writing CUDA code 35 / 70



Simple 2D example

Suppose we want to solve Laplace’s equation in 2D

∂u

∂t
= ∇2u

using a forward Euler method:

un+1
i,j = uni,j +

(
∆t

∆x2

)
(uni+1,j + uni,j+1 − 4uni,j + uni−1,j + uni,j−1)

Philip Blakely (LSC) Writing CUDA code 36 / 70



Simple 2D example ctd

This has a basic 2D stencil:

Philip Blakely (LSC) Writing CUDA code 37 / 70



Basic thread set-up

For simplicity, we choose to update one cell per thread.

Our thread-block size will be 32× 32.

Therefore, our grid dimension will be:

dim3 blockDim(32, 32, 1);
dim3 gridDim((int)ceil(cells/32.0), (int)ceil(cells/32.0), 1);

We call a kernel using:

setInitialData<<<gridDim, blockDim>>>(dataCurr, cells);

Within a kernel, the cell we update is:

int i = threadIdx.x + blockIdx.x * 32;
int j = threadIdx.y + blockIdx.y * 32;

If we wanted to choose our block-size at run-time, we could use
blockSize.x and blockSize.y in place of 32.

Philip Blakely (LSC) Writing CUDA code 38 / 70



Out-of-bounds protection

If our grid is 100× 100, for example, we launch a grid of 4× 4
thread-blocks, each with 32× 32 threads.
Block (3, 3) corresponds to elements (96, 96) to (127, 127).
Therefore, we include within the kernel:

global void setInitialData(float* data, int N)
{
int i = threadIdx.x + blockIdx.x * 32;
int j = threadIdx.y + blockIdx.y * 32;
if(i <= N−1 && j <= N−1)
{

...

}
}

to stop out-of-bounds access from happening.
This is normal practice within CUDA.

Philip Blakely (LSC) Writing CUDA code 39 / 70



Memory allocation

The forward-Euler update requires two arrays to be kept in
memory:

One for the currrent time-step, and one for the next time-step:

float *dataCurr, *dataNext, *hostData;
hostData = new float[cells *cells];
cudaMalloc(&dataCurr, cells * cells * sizeof(float));
cudaMalloc(&dataNext, cells * cells * sizeof(float));

We swap the pointers after each time-step to avoid an explicit
copy operation.

Philip Blakely (LSC) Writing CUDA code 40 / 70



Evolution step

We update all cells inside the boundary according to the
finite-difference formula:

global void advance(const float* dataOld, float* dataNew,
int N, float dt)

{
int i = threadIdx.x + blockIdx.x * 32;
int j = threadIdx.y + blockIdx.y * 32;

if(i > 0 && i < N−1 && j > 0 && j < N−1)
{
dataNew[i + j*N] = dataOld[i + j*N] +
(dt/(dx*dx))*(dataOld[i+1 + j*N]
+ dataOld[i−1 + j*N]
+ dataOld[i + (j+1)*N]
+ dataOld[i + (j−1)*N]
− 4*dataOld[i + j*N]);

}
}

Philip Blakely (LSC) Writing CUDA code 41 / 70



Host instructions

To call the kernel from the host:

We compute ∆t = µ∆x2:

float dt = mu*dxCPU*dxCPU;

call the advance kernel:

advance<<<gridDim, blockDim>>>(dataCurr, dataNext, cells, dt);

swap the data pointers:

std::swap(dataCurr, dataNext);

and loop until t == T.

Philip Blakely (LSC) Writing CUDA code 42 / 70



Summary

We have now covered the basic additions to C++ that form CUDA

However, CUDA is hard to optimize

We need to look at hardware characteristics to understand
performance

Also need to ensure correctness of algorithms

Philip Blakely (LSC) Writing CUDA code 43 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 44 / 70



Global memory access

Global memory bandwidth is fast - 1,500-2,000 GB/s for latest
cards

But - there are many factors that can cause lower performance

Global memory is accessed in 32-byte, 64-byte, and 128-byte
chunks, aligned to start at a multiple of their size.

Each warp of 32 threads coalesces global memory reads into as few
chunks as possible.

If not all the data in each chunk is used/needed (by the entire
warp), then bandwidth has been wasted.

Philip Blakely (LSC) Writing CUDA code 45 / 70



Global memory access - coalesced example

Perform an operation on each element of N ×N array a

Take N=16 and we concentrate on one block only.
global void f(float* a, int N){
int i = threadIdx.x;
int j = threadIdx.y;
float r = a[ j * N + i ]
/* Do something with r */
a[j * N + i] = r;

}
Adjacent threads read adjacent 4-byte floats in memory -
coalesced access

Each set of sixteen threads reads 64 bytes

One memory transaction per 16 threads

Philip Blakely (LSC) Writing CUDA code 46 / 70



Global memory access - uncoalesced example

Perform an operation on each element of N ×N array a

Take N=16 and we concentrate on one block only.
global void f(float* a, int N){
int i = threadIdx.x;
int j = threadIdx.y;
float r = a[ i * N + j ]
/* Do something with r */
a[i * N + j] = r;

}
Adjacent threads read floats separated by 16× 4 bytes
Each thread reads the minimum-sized chunk of 32 bytes (512 bytes
for 16 threads)
One memory transaction per thread
Effective bandwidth reduced by factor of 8 on all compute
capabilities

Philip Blakely (LSC) Writing CUDA code 47 / 70



Coalescence details ctd.

If some threads do not access any data, this does not add any
further overhead to the data access.

The order in which threads access the data within a block is not
important.

Global memory access is cached through the global L2 cache and
per-multiprocessor L1 cache. Attaining the maximum memory
bandwidth is therefore somewhat easier than the above might
suggest.

The method used to determine which memory reads can be
coalesced is complicated. For full details, see the Programming
Guide.

Philip Blakely (LSC) Writing CUDA code 48 / 70



Coalescence illustrations

Consider: float x = a[i]; (with minor variations)

Diagram Copyright NVIDIA

When all threads access sequential elements aligned to a 128 byte
boundary, we get the minimum possible amount of data transfer.
Whether caching occurs or not depends partly on the compiler and
partly on the run-time configuration of the L1/L2 caches.

Philip Blakely (LSC) Writing CUDA code 49 / 70



Coalescence illustrations

Consider: float x = a[i+1];

Diagram Copyright NVIDIA

When threads access memory in a misaligned fashion, there is always
some wastage, since we only use one element of, say, the second
128-byte block.

Philip Blakely (LSC) Writing CUDA code 50 / 70



Determining bandwidth

Bandwidth (in GB/s) for a kernel is given by:

(Bytes read) + (Bytes written)

10243 × (Time in ms)/1000

If a kernel requires no or little computation, this should be close to
the theoretical bandwidth for the device, for best performance.

If a calculation is bandwidth-bound, then it is necessary to work
on the layout of data in memory, or find some way to cache data
in shared memory, or hide the latency.

Philip Blakely (LSC) Writing CUDA code 51 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 52 / 70



Global memory access visibility

When a thread issues a write to global memory, the updated value
may not be available to other threads.

Remember that the order in which blocks run is unknown.

In order to ensure that read/write has occured, use

threadfence block() waits until all global and shared memory
accesses made by the calling thread are visible to the current block

threadfence() waits until all global and shared memory
accesses made by the calling thread are visible to all threads in the
block (for shared memory) or device (for global memory)

syncthreads() waits until all threads in the block have reached
this point, and also as for threadfence block()

Without these, the compiler may optimize global/shared read/write
and assume that two accesses to the same global memory location
return the same value. (see also volatile keyword)

Philip Blakely (LSC) Writing CUDA code 53 / 70



Potential global memory access problem

Contrived example of undefined behaviour when accessing global
memory:

global void myKernel(int *array){
int i = threadIdx.x;
int x = array[i];
syncthreads();

array[i+1] = i;
syncthreads();

int y = array[i];
array[i] = x * y;

If either of the syncthreads() were missing, the required effect
that array[i] *= (i-1) might not hold.

First missing: Thread i=31 could set array[32]=31 before thread
32 reads original value into x

Second missing: Thread 32 could read array[32] before thread 31
has set array[32]=31

Philip Blakely (LSC) Writing CUDA code 54 / 70



Potential global memory access problem

Contrived example of undefined behaviour when accessing global
memory:

global void myKernel(int *array){
int i = threadIdx.x;
int x = array[i];

syncthreads();

array[i+1] = i;
syncthreads();

int y = array[i];
array[i] = x * y;

If either of the syncthreads() were missing, the required effect
that array[i] *= (i-1) might not hold.

First missing: Thread i=31 could set array[32]=31 before thread
32 reads original value into x

Second missing: Thread 32 could read array[32] before thread 31
has set array[32]=31

Philip Blakely (LSC) Writing CUDA code 54 / 70



Potential global memory access problem

Contrived example of undefined behaviour when accessing global
memory:

global void myKernel(int *array){
int i = threadIdx.x;
int x = array[i];
syncthreads();

array[i+1] = i;

syncthreads();

int y = array[i];
array[i] = x * y;

If either of the syncthreads() were missing, the required effect
that array[i] *= (i-1) might not hold.

First missing: Thread i=31 could set array[32]=31 before thread
32 reads original value into x

Second missing: Thread 32 could read array[32] before thread 31
has set array[32]=31

Philip Blakely (LSC) Writing CUDA code 54 / 70



Warp synchronization

The use of 32 above is deliberate; threads in different warps will
almost certainly not run simultaneously.

Even for smaller values of 32 we could have encountered a
problem; use syncwarp() instead of syncthreads().

General advice

Easiest approach for Global memory is found by writing each global
memory location from precisely one thread.
This should avoid any issues of correctness.

Philip Blakely (LSC) Writing CUDA code 55 / 70



Outline

1 CUDA Language

2 Multi-dimensional thread blocks

3 CUDA extensions to C++

4 Global memory performance

5 Global memory correctness

6 Shared memory and performance

Philip Blakely (LSC) Writing CUDA code 56 / 70



Shared memory

Recall: Shared memory is allocated per thread-block and is available to
all threads in that block

Using shared memory

global void f(float a, float b){
shared float data[16][16];

}

The data array (1024 bytes) would be available for reading and
writing by all threads in the block.

There is one data array per thread block. Thread blocks cannot
access each other’s shared memory.

The maximum shared memory available is around 48kB (may be
higher on some high-end cards). It is very easy to exceed this
limit, and get a kernel that will fail to run.

Shared memory results only available to threads in other warps
after syncthreads()

Philip Blakely (LSC) Writing CUDA code 57 / 70



Use of shared memory

Matrix multiplication

Given matrices:
A (M × 16), B (16×N),
multiply to give:
C = AB (M ×N)

We shall cover several ways of doing this, with increasing efficiency.

Kernels taken from NVIDIA CUDA C BestPractices.pdf

Surrounding code just initializes matrices and times kernels

Use block-size 16× 16.

Remember that warp size is 32, so block height and width are a
half-warp.

Philip Blakely (LSC) Writing CUDA code 58 / 70



Näıve approach

All data read directly from global memory on each thread.
#define TILE DIM 16

// Taken from CUDA Best−Practices Guide Listing 3.7
global void simpleMultiply(float *a, float* b, float *c,

int N){
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
float sum = 0.0f;
for (int i = 0; i < TILE DIM; i++) {
sum += a[row*TILE DIM+i] * b[i*N+col];

}
c[row*N+col] = sum;

}
Note that every thread in the warp executes i = 0, 1, . . . in order.

Each thread reads same element of a at the same time since
row*TILE DIM is same on all threads in half-warp.

This is coalesced access, but wasteful.

Each thread reads sequential elements from b

This is coalesced access, and uses full bandwidth.

Philip Blakely (LSC) Writing CUDA code 59 / 70



Näıve approach

Different colours correspond to different i.

Bandwidth: 12.5 GBps (Tesla K20c - peak 147 GBps - CC 3.5)

Bandwidth: 5.5 GBps (Quadro K620 - peak 27 GBps - CC 5.0)

Philip Blakely (LSC) Writing CUDA code 60 / 70



Using shared memory

// Taken from CUDA Best−Practices Guide Listing 3.8
global void coalescedMultiply(float *a, float* b, float

*c, int N){
shared float aTile[TILE DIM][TILE DIM];

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

float sum = 0.0f;

aTile[threadIdx.y][threadIdx.x] =
a[row*TILE DIM+threadIdx.x];

for (int i = 0; i < TILE DIM; i++) {
sum += aTile[threadIdx.y][i]* b[i*N+col];

}

c[row*N+col] = sum;
}

Philip Blakely (LSC) Writing CUDA code 61 / 70



Using shared memory

A tile of a is read into shared memory using coalesced access

No syncthreads call needed since threads in same warp run in
step.

Threads then read from shared memory - much quicker than global

Philip Blakely (LSC) Writing CUDA code 62 / 70



Using shared memory

Reading into shared memory.

Philip Blakely (LSC) Writing CUDA code 63 / 70



Using shared memory

Using shared memory to compute product.

Bandwidth: 18.89 GBps (Tesla K20c)

Bandwidth: 11.1 GBps (Quadro K620)

Philip Blakely (LSC) Writing CUDA code 64 / 70



Using more shared memory

// Taken from CUDA Best−Practices Guide Listing 3.9
global void sharedABMultiply(float *a, float* b, float *c,

int N){
shared float aTile[TILE DIM][TILE DIM],

bTile[TILE DIM][TILE DIM];

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

float sum = 0.0f;

aTile[threadIdx.y][threadIdx.x] =
a[row*TILE DIM+threadIdx.x];

bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];
syncthreads();

for (int i = 0; i < TILE DIM; i++) {
sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];

}

c[row*N+col] = sum;
}

Philip Blakely (LSC) Writing CUDA code 65 / 70



Using more shared memory

Also read a tile of b into shared memory.

Need syncthreads call since threads from different warps need
access to each row of bTile

Global write to c[row*N+col] is coalesced anyway.

Philip Blakely (LSC) Writing CUDA code 66 / 70



Using more shared memory ctd

Reading into shared memory

Philip Blakely (LSC) Writing CUDA code 67 / 70



Using more shared memory ctd

Using shared memory to compute product.

Bandwidth: 28.3 Gbps (Tesla K20c)

Bandwidth: 12.9 GBps (Quadro K620)

Philip Blakely (LSC) Writing CUDA code 68 / 70



Shared memory and caches

The preceding approaches, while useful for demonstrating
shared-memory usage, are not as useful as they once were.

About 7 years ago I used to see a factor of 8 performance
improvement just by using the second form of the function, and a
further factor 3 for the third.

Global memory reads are now cached on the
streaming-multiprocessor, without input from the programmer.

Use of shared-memory is potentially still useful for more complex
global memory reads/writes, though.

Philip Blakely (LSC) Writing CUDA code 69 / 70



Branching

Where possible, threads in a warp execute in step

If some threads branch one way and some another, then
instructions are executed serially in sets.

if( threadIdx.x % 2 == 0 ) will cause divergent branching
while some threads execute the if block,

if( blockIdx.x % 2 == 0 ) will not cause divergent branching
because all threads in the warp (and block) will branch the same
way.

The first case will cause slowdown since some threads in the warp
are paused while the other threads execute.

This is the price we pay for higher FLOPS.

It is best to avoid divergent branching if at all possible.

Philip Blakely (LSC) Writing CUDA code 70 / 70


	CUDA Language
	Multi-dimensional thread blocks
	CUDA extensions to C++
	Global memory performance
	Global memory correctness
	Shared memory and performance

