MPI: Practical session 3

1 Gather

Modify the program from the previous practial to use MPI_Gather instead of MPI_Reduce (see slide 88).

2 Scatter and Gather

Write a program that carries out the following operations:

e Given an MPI program running on N processors, generate an N X N matrix on process zero, with
integer elements A; ; =i x N + j. This should use a contiguous block of memory.

Use MPI_Scatter to distribute each row of the matrix to its own process (e.g. A, for 0 < i < N will
end up on process p).

On each process, sum the elements in the row and print this sum to the screen.

Gather the sum from each process back onto rank 0.

Print out the total sum of elements on rank 0 to the screen.

3 Transpose

This example may prove somewhat mind-taxing; it requires the ability to think carefully about what data
is held by what process.

Note that MPI_Scatter permits elements with various offsets to be scattered to each process.

Write a program that uses MPI_Scatter exactly N times and MPI_Gather exactly once to transpose a
matrix of size N x N (initially stored on process 0), where N is the number of processors on which the
program is run.

Hint: Each process should (temporarily) hold one row of the matrix.

You are strongly encouraged to implement careful checking, to ensure that the correct result is obtained.

4 Calculation of 7

Compute /4 using Monte Carlo technique. Follow the example on slide 77, adjusting for independent
random numbers on each process.

One might reasonably wish to perform quite a large number of iterations in this program for calculating
m/4 , as the iterations are fast and convergence is slow. Can you write something which will run with more
than 232 iterations, remembering that the total iteration count will no longer fit into a default 32-bit integer?

In C and C++ one can use the MPI.LONG datatype in MPI calls, and this is probably 64 bits. In
Fortran there is no simple MPI call for sending non-default integers. One solution is to remember that a
double precision variable can reliably store integers up to about 2°3, so one can convert Fortran’s longer
integers to doubles before sending them without losing accuracy provided that they are less than that.



integer(selected_int kind(12)) :: count

in Fortran gives an integer capable of storing integers in the range +10'2. This cannot be a 32 bit integer,
so will probably be a 64 bit one. Do your results actually keep improving with larger iteration counts, or do
you suffer from a random number source with a short periodicity?



