Profiling

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Profiling for C++ 1/15

Part [

Profiling

Philip Blakely (LSC) Profiling for C++ 2/15

Profiling

As HPC programmers, we want our code to run as fast as possible.
How do we know which parts are causing the bottleneck?
Good profiling is essential; it may not be the parts you expect.

“Premature optimization is the root of all evil” - Donald Knuth

Philip Blakely (LSC) Profiling for C++ 3/15

Things you should already have considered

Correct algorithm

Basic data layout for reasonable cache performance

Do not copy data around more often than necessary; pass by
reference.

This talk is applicable to C/C++/Fortran only; other languages
have their own profiling tools.

e Examples are given in C++ but the tools/APIs have C and Fortran
interfaces.

Philip Blakely (LSC) Profiling for C++ 4 /15

Basic timing

@ Basic profiling can often be achieved by:

clock_t start = clock();

// Do something expensive

clock_t end = clock();

std::cout << "Total time " << (double) (end — start) /
CLOCKS_PER_SEC << "s" << std::endl;

o Using some well-placed macros and putting them around likely
functions may be all you need.

o More advanced use may require summing the time taken for
multiple calls to the same function.

Philip Blakely (LSC) Profiling for C++ 5/15

gprof

The next step is to use automatically instrumented profiling calls
from the compiler:
https://sourceware.org/binutils/docs/gprof/

With gcc, use the -pg option.

With icc, use the -p option.
o Run instrumented code as normal, slowdown: Less than 5%.
Generates gmon.out file.

Post-process using: gprof ./MyCode ./gmon.out

Philip Blakely (LSC) Profiling for C++ 6/ 15

https://sourceware.org/binutils/docs/gprof/

Flat profile:
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
100.04 0.03 0.03 dot (int
0.00 0.03 0.00 1 0.00 0.00 _GLOBAL.
0.00 0.03 0.00 1 0.00 0.00 _GLOBAL.

Philip Blakely (LSC) Profiling for C++ 7/15

valgrind

http://valgrind.org/
No recompilation needed (debugging symbols -g required).

Essentially a CPU emulator; includes cache and branch-prediction
simulation. Run normal code as:

valgrind --tool=callgrind --callgrind:dump-instr=yes
--cache-sim=yes --branch-sim=yes ./MyCode
Slowdown: Factor of 30-50.

Visualise using kcachegrind.

Philip Blakely (LSC) Profiling for C++ 8/ 15

Score-P

e http://www.vi-hps.org/projects/score-p/

@ Special compiler/linker wrapper required. Available on CSD3 as a
module:

module load scorep/2.0.2/intel-impi-latest
scorep-cxx —c¢ MyMPICode.C -03 MyMPICode.o

export SCOREP_ENABLE_TRACING=1
export SCOREP_ENABLE_PROFILING=1
export SCOREP_EXPERIMENT_DIRECTORY=./MyMPICode_ScoreP_npl
./MyMPICode

@ Slowdown: Varies but usually less than 5%

o Generates output in $SCOREP_EXPERIMENT_DIRECTORY in otf2
format.

Philip Blakely (LSC) Profiling for C++ 9/15

Visualisation

Various visualisation tools are available for SCOREP output:
e Cube (GUI not brilliant)
e Periscope, TAU (did not compile immediately...)
@ Vampir - commercial code - cheapest option about 500.

I have mainly used Vampir; seems to have the clearest UL

Philip Blakely (LSC) Profiling for C++ 10 / 15

MPI profiling

o If we simply profile individual MPI processes, we have no visibility
of what causes an MPI function call to wait.

@ The MPI standard allows for profiling functions/hooks to be
implemented and labelled with the universal wall-clock time.

@ Score-P does this for most MPI functions.

Philip Blakely (LSC) Profiling for C++ 11/ 15

MPI Visualisation

Vampir comes into its own when applied to MPI codes.

Philip Blakely (LSC) Profiling for C++ 12 /15

Processor instructions

papi_avail:

PAPI_L1_DCM
PAPI_L1_ICM
PAPI_L1_TCM

PAPI_FP_0OPS
PAPI_SP_0OPS
PAPI_DP_OPS

Level 1 data cache misses
Level 1 instruction cache misses
Level 1 cache misses

Floating point operations
Floating point operations; optimized to count sc:
Floating point operations; optimized to count sc:

Note that these are only available on Xeon-class processors, not

i7-class.

export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_VEC_DP,PAPI_L1_TCM

See results in Vampir.

Philip Blakely (LSC) Profiling for C++ 13/ 15

Score-P user instrumentation

@ Although the scorep-cxx wrapper instruments code
automatically, this may be overkill (e.g. in case of many small
inlined functions).

@ Better focused profiling may be achieved by turning off all
function instrumentation and using macros:

int £(){
SCOREP_USER_FUNC_BEGIN () ;
SCOREP_USER_REGION_DEFINE (MyAlgPartl) ;
SCOREP_USER_REGION_BEGIN (MyAlgPartl,
"AlgorithmPart1", SCOREP_USER_REGTON_TYPE_COMMON) ;

/x Some code; =%/
SCOREP_USER_REGION_END (MyAlgPartl);

SCOREP_USER_REGION_DEFINE (MyAlgPart2);

SCOREP_USER_REGION_BEGIN (MyAlgPart2,
"AlgorithmPart2", SCOREP_USER_REGION_TYPE_COMMON) ;

/* Some other code;x*/

SCOREP_USER_REGION_END (MyAlgPart?2) ;

SCOREP_USER_FUNC_END () ;

Philip Blakely (LSC) Profiling for C++ 14 / 15

Unexpected things you may find

@ Multiple small memory allocations - try using a pool of memory
instead

e pow function in glibc used to run very slowly for certain inputs.

e Input/output performance

Philip Blakely (LSC) Profiling for C++

	Profiling

