Valgrind

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Valgrind 1/21



Part [

Valgrind

Philip Blakely (LSC) Valgrind 2/ 21



Valgrind

http://valgrind.org/

Pronunciation: The ”Val” as in the word ”value”. The ”grind” is
pronounced with a short i’ —ie. ”grinned” (rhymes with ”tinned”)
rather than ”grined” (rhymes with ”find”).

Origin: Valgrind is the name of the main entrance to Valhalla.

Valgrind is an emulator, supporting a wide range of modern
processors.

e It contains a number of tools from memory usage (amount,
uninitialised data) to performance.

Philip Blakely (LSC) Valgrind 3/21



Supported processors

As of Version 3.13 (June 2017):
@ x86/Linux: Up to and including SSE3 instructions.
@ x86_64 (AMD64/Linux): Up to and including AVX2 instruction.
e ARM64/Linux
e AMDG64/Darwin (Mac OS X - 10.9.x and later)

Philip Blakely (LSC) Valgrind 4/21



Memcheck - overview

Valgrind’s default tool is Memcheck: --tool=memcheck

e All memory allocated via malloc, new, new[] (and similar) is
tracked.

e Memory allocated on stack (local variables) is checked for
initialization.

@ Checks (mostly) heap based memory only.

Philip Blakely (LSC) Valgrind 5 /21



Memcheck

Errors detected:
@ Access to data outside a heap-allocated region
@ Segmentation faults
@ Branch statements based on uninitialised data
e Mismatched new [] and delete (for example)
And not detected...
e Floating point exceptions

e Copying or arithmetic operations on uninitialised data (Note that
sqrt, sin, etc. involve branches internally and will be picked up.)

Philip Blakely (LSC) Valgrind 6 /21



Memcheck - Example

@ valgrind ./UninitData
o Invalid write of size n
@ Conditional jump depends on uninitialised value

o Add --track-origins=yes

Philip Blakely (LSC) Valgrind 7/21



Memcheck - Run-time macros

Sometimes you want to check whether particular data is initialised,
without artificially introducing a branch-statement based on it.

#include <valgrind/memcheck.h>
VALGRIND_CHECK_MEM_IS_ADDRESSIBLE (dataPtr, sizeof (double));
VALGRIND_CHECK_MEM_IS_DEFINED (dataPtr, sizeof (double));
VALGRIND_CHECK_VALUE_IS_DEFINED (myVariable) ;

will cause Memcheck to test for the data being initialised.

The first two have return values of the first address not

addressible/initialised.

Philip Blakely (LSC) Valgrind 8 /21



Memcheck - Attaching a debugger

Older versions of valgrind allowed you to attach a debugger in the
same terminal to a valgrind running process.

@ Now, the process is slightly more complex, but allows better
diagnostics.
o Pass the options: --vgdb=yes --vgdb-error=0

Now at start-up, valgrind displays:
o Now invoke gdb on the same executable, and within gdb:

target remote | /usr/lib/valgrind/../../bin/vgdb

Philip Blakely (LSC) Valgrind 9/21



Memcheck - checking memory status

e From within gdb attached as above, you can check which variables
are initialized.

(gdb) print data
(float *) 0x5a20040
(gdb) monitor get_vbits 0x5a20040 24
fff££££f£f 00000000 00000000 00000000 00000000 00000000
Showing that the first 4 bytes are undefined, and the next 20 are

defined.

monitor get_vbits 0x5a20038 24
,,,,,,,, fffff£f££f 00000000 00000000 00000000

Showing that the previous 8 bytes are not accessible (and may
cause a seg-fault if accessed).

e Now introduce uninitialized data from stack and try again...

Philip Blakely (LSC) Valgrind 10 / 21



Leak checking

@ The option --leak-check=yes will generate a list of all memory
not freed using free / delete at the end of the program.

@ Use your judgement as to whether this is important or not; if a
memory allocation is only done once (and leaks), it may not
matter.

@ There are different levels of memory loss:

o Definitely lost: No pointers to the data exist at program exit.

o Still reachable: A pointer to the leaked memory can be found via
another pointer from non-lost memory

o Indirectly lost: A pointer to the leaked memory can only be found
from otherwise lost memory.

o Possibly lost: A pointer offset from the originally allocated data
start has been found, i.e. it may be possible to recover the original
pointer and free the memory.

e Example: valgrind --leak-check=full DatalLeak

Philip Blakely (LSC) Valgrind 11 /21



Suppressions

o All valgrind errors can be suppressed.

@ This may be useful for ignoring errors from libraries over which
you have no control.

@ Use the -—gen-suppressions option to write a suppressions file.

Philip Blakely (LSC) Valgrind 12 /21



SGCheck

@ SGCheck aims to do what Memcheck does, only for stack-based
arrays.

o It does this heuristically, assuming that instructions accessing a
particular array should always access that array.
@ Thus, a loop that attempts to access out-of-bounds of an array:
int a[10];

for(int 1=0 ; i <= 10 ; i++) ali] = i;

will be caught.

Some false positives may arise, though.

See valgrind --tool=exp-sgcheck ./SGDemo

However, I haven’t used this tool much; most data in HPC
applications is on the heap.

Philip Blakely (LSC) Valgrind 13 /21



Massif - overview

Massif periodically takes a snapshot of live heap-allocated
memory: its size and point of allocation.

It can therefore pick up on memory leaks that are cleaned up at
program exit (via destructor or similar).

e To run using Massif:

valgrind —tool=massif ./MassifDemo

and post-process with:

ms_print massif.out.12345 > massif.out.12345.pp

Philip Blakely (LSC) Valgrind 14 / 21



Massif snapshot frequency

@ The frequency of snapshots is heuristically defined, but Massif will
try to capture memory-use peaks.

o Typically, it will take between 50 and 100 snapshots over any
program.

@ Detailed snapshots with complete stack-traces of the provenance of
all memory allocated are only taken occasionally. Use
--detailed-freq=1 for more of these.

Philip Blakely (LSC) Valgrind 15 / 21



Callgrind

o Callgrind profiles code according to numbers of instructions used,
and estimation of branch prediction and cache use

@ valgrind --tool=callgrind ./md_demo
@ Visualise using kcachegrind, at source-line and instruction level

@ Caveats: The cache and branch predicition may not be
particularly realistic.

Philip Blakely (LSC) Valgrind 16 / 21



Helgrind

@ Thread error detector.
@ Detects potential deadlocks and data-races with pthreads

@ Pthreads not advisable for HPC development; use MPI or
OpenMP.

Philip Blakely (LSC) Valgrind

17 / 21



@ Data-Race Detector.

@ Able to detect data-races and other conflicts within threaded
programs.

@ Some OpenMP errors may be detectable with this tool.

Philip Blakely (LSC) Valgrind



@ Dynamic heap analysis tool.

@ Analyses how much data is used out of dynamically allocated
arrays and how long blocks are allocated for.
@ Useful for detecting:

o Arrays which are sparsely used (reconsider data-layout)

o Code lines which allocate short-lived blocks of memory (reuse
existing heap memory, change algorithm, or consider a memory
pool)

e Code-lines which allocate blocks of memory that do not leak, but
exist for a long time within the code (may well be intentional, but
can suggest regions that are almost memory-leak-like).

Philip Blakely (LSC) Valgrind 19 /21



.valgrindrc

You can create a /.valgrindrc file containing, for example:

—memcheck:——leak—check=yes
—callgrind:cache—sim=yes
—callgrind:branch—sim=yes
—-—callgrind:simulate—wb=yes
—callgrind:simulate—hwpref=yes
——callgrind:cacheuse=yes
——callgrind:dump—instr=yes

to save typing at the command line.

Philip Blakely (LSC) Valgrind 20 / 21



Valgrind documentation

See /usr/share/doc/valgrind /valgrind_manual.pdf.gz
Very detailed description of valgrind and well written.

Philip Blakely (LSC) Valgrind 21 /21



	Profiling

